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Abstract:

This document (from Work Package 3) provides the specification and user guidance for three, of eight,
parameterised technology models that will be used by the Bioenergy Value Chain Modelling (BVCM) project. The
three technologies covered in this report are biomass co-firing in a pulverised coal-fired power plant with post
combustion amine scrubbing-based carbon capture, biomass combustion in a dedicated power plant with carbon
capture by solvent scrubbing, and biomass co-firing in a large pulverised coal power plant with carbon capture by
oxyfuel firing.

Context:

The Biomass to Power with CCS Phase 1 project consisted of four work packages: WP1: Landscape review of
current developments; WP2: High Level Engineering Study (down-selecting from 24 to 8 Biomass to Power with
CCS technologies); WP3: Parameterised Sub-System Models development; and WP4: Technology
benchmarking and recommendation report. Reports generally follow this coding. We would suggest that you do
not read any of the earlier deliverables in isolation as some assumptions in the reports were shown to be invalid.
We would recommend that you read the project executive summaries as they provide a good summary of the
overall conclusions. This work demonstrated the potential value of Biomass to Power with CCS technologies as
a family, but it was clear at the time of the project, that the individual technologies were insufficiently mature to
be able to ‘pick a winner’, due to the uncertainties around cost and performance associated with lower
Technology Readiness Levels (TRLS).
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EXECUTIVE SUMMARY

The Techno-economic Study of Biomass to Power with CCS (TESBIC) project, which has been
commissioned by ETI, is concerned with the performance of an overview techno-economic
assessment of the current and potential future approaches to the combination of
technologies which involve the generation of electricity from biomass materials, and those
which involve carbon dioxide capture. The present document forms the deliverable within
work package, WP3; and it covers the work on:

D3.3: Parameterised sub-system models
D3.4: Model requirements and specifications and modelling strategy
D3.5: Model and sub-model user documentation

Following the first variation of Contract/Agreement with ETI, the aforementioned
deliverables have been applied to next three (T3,T4,T5) out of eight technology
combinations.

T3 denotes biomass co-firing in a pulverised coal-fired power plant with post
combustion amine scrubbing-based carbon capture

T4 represents biomass combustion in a dedicated power plant with carbon capture
by solvent scrubbing

T5 represents biomass co-firing in a large pulverised coal power plant with carbon
capture by oxyfuel firing

The overall model structure finalised for WP3 employs the “base+delta” modelling
framework (see D3.1 and D3.2). This fits the requirements for the capture of information
and transfer to ETI and compatibility with the Biomass Value Chain Modelling (BVCM) and
ETI’s Energy System Modelling (ESME) projects. The models were developed based on the
techno-economic sensitivity data obtained from WP2 and additional available data. The
“base+delta” model is readily implementable in MS-Excel™.

This document also provides user documentation of the models and its sub-models
developed as part of WP3. This document is intended to enable any potential user to use
and understand the models and their application. Data standard validation, parameter
estimation and improvement of model robustness were carried out using the Model
Development Suite (MoDS). Overall, the models offer evaluation of key techno-economic
variables such as CAPEX, OPEX, efficiencies, and emissions as a function of inputs such as co-
firing, capacity factor, nameplate capacity and extent of carbon capture.

Within WP3, the next deliverable of the project will focus on utilising the methodology and
infrastructure developed in the present deliverable along with the techno-economic
sensitivity data from WP2 for the last three technology combinations.



1. MODEL REQUIREMENTS OVERVIEW

The models developed within WP3 should be easily translated into the modelling structures
of the Biomass Value Chain Modelling (BVCM) and ETI’s Energy System Modelling (ESME)
projects. As discussed in the project proposal and the acceptance criteria, WP3 will use the
detailed models and results of WP2 and other available data (as shown in Figure 1) to
generate meta-models (rather than first principles models) for delivery to the ETI.

Outputs; TR
" Meta-
= Model Meta-
@ | ¥ | generation model

Case studies (WP2),
Public domain data/models

Figure 1: Overview of metamodelling approach.

The detailed “base+delta” model description as well as the implementation of the parameter
estimation methodology were explained in the previous Deliverable report that focused on
first two technologies (T1,T2), and hence will not be repeated in the present report.

2. MODEL DETAILS: Coal combustion with co-firing and amine scrubbing [T3]
For this technology, the data was of the form:

e Inputs (4-dimensional vector x)
o Nameplate capacity (MWe)
o Operating capacity (MWe)
o Co-firing (%)
o Carbon capture extent (%)
e Outputs (6-dimensional vector ¥ = (¥4, ¥2, V3, Va, Vs, Ve ) ) )
o Capital cost (k £/MWe)
Non-fuel operating cost (k £/MWhe)
Generation efficiency (%)
CO, emissions (kg CO,/MWhe)
SO, emissions (kg SO,/MWhe)
NO, emissions (kg NO,/MWhe)

O O O O

The data were obtained from the WP2 report and activities as well as a range of sources as
described later. The process flow diagram is illustrated in Figure 2 below.
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Figure 2. Process flow diagram for PC/Co-firing/PCC plant



A variety of data sets were used to generate the meta-models; these are summarised in
Appendix 1.

3. MODEL DETAILS: Dedicated biomass combustion with amine scrubbing [T4]

Input and output data: This technology does not have co-firing, and so the inputs and
outputs are:

e Inputs (3-dimensional vector x)
o Nameplate capacity (MWe)
o Operating capacity (MWe)
o Carbon capture extent (%)
e Outputs (6-dimensional vector ¥ = (¥4, ¥2, V3, Va, ¥s, Ve ) ) )
o Capital cost (k £/MWe)
Non-fuel operating cost (k £/MWhe)
Generation efficiency (%)
CO, emissions (kg CO,/MWhe)
SO, emissions (kg SO,/MWhe)
NO, emissions (kg NO,/MWhe)

O O O O

A variety of data sets were used to generate the meta-models; these are summarised in
Appendix 2.
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Figure 3. Process flow diagram for biomass combustion with solvent scrubbing



4. MODEL DETAILS: Coal co-firing with oxy-combustion [T5]
Input and output data: This technology has the following inputs and outputs:

e Inputs (4-dimensional vector x)
o Nameplate capacity (MWe)
o Operating capacity (MWe)
o Co-firing extent (%)
o Carbon capture extent (%)
e Outputs (6-dimensional vector ¥ = (¥4, ¥2, V3, Va, ¥s, Ve 1 ) )
o Capital cost (k £/MWe)
Non-fuel operating cost (k £/MWhe)
Generation efficiency (%)
CO, emissions (kg CO,/MWhe)
SO, emissions (kg SO,/MWhe)
NO, emissions (kg NO,/MWhe)

O O O O O

A variety of data sets were used to generate the meta-models; these are summarised in
Appendix 2.
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Figure 4. Process flow diagram for coal/biomass oxy-combustion
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5. MODEL OVERVIEW, APPLICATION RANGE AND USER-DOCUMENTATION: CO-FIRED
COMBUSTION WITH AMINE SCRUBBING

A sample model has been developed in Microsoft Excel™. We note that in the case of the

co-fired combustion with amine scrubbing technology [T3], the applicable operation ranges

of this model are presented in Table 1.

Table 1: Operating range of Co-fired combustion with amine scrubbing (*: of actual capacity)

Lower bound Upper bound
Nameplate capacity (MWe) 300 1000
Capacity Factor (%) 60 100
Co-firing extent 0 50
CO, capture extent (%) 50 98

A screenshot of a sample model for a PC power plant with co-firing and amine-based CO,

capture is shown in Figure 5 with some explanations provided below.

The required user inputs are highlighted in yellow. These are the plant nameplate capacity,

its operating capacity and the extent of CO, capture. In order to use this model, the user

must provide these inputs within the operating ranges specified in Table 1.

The model outputs are highlighted in blue. These are the plant capital cost, the non-fuel

operating cost, the plant efficiency and the CO, emissions. These inputs and outputs can
then be entered into the BVCM technology database and the ESME data sheets.
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Model Fidelity

In this section, we present an analysis of the fidelity of the proposed model.
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Figure Figure 6: Efficiency data fit as a function of degree of capture

As can be observed from Figures 6-10, the proposed model gives a quantitatively reliable
description of the data available from WP2. Thus, this model is considered suitable for data
generation for the BVCM and ESME teams.
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Figure 7: Capital cost data fit as a function of degree of capture.
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6. MODEL OVERVIEW, APPLICATION RANGE AND USER-DOCUMENTATION:
DEDICATED BIOMASS WITH AMINE SCRUBBING

A sample model has been developed in Microsoft Excel™.

We note that in the case of the dedicated biomass with post combustion amine scrubbing
based carbon capture technology [T4], the applicable operation ranges of this model are
presented in Table 2.

Table 2: Operating range of dedicated biomass with amine scrubbing model

Lower bound Upper bound
Nameplate capacity (MWe) 20 100
Capacity Factor (%) 60 100
CO2 capture extent (%) 30 95

The models will be delivered to the ETI in this format. A screenshot of a sample model for
dedicated biomass combustion with amine scrubbing based carbon capture is shown in
Figure 11 with some explanations. The model has been implemented in MS Excel ™ and the
worksheet has been password protected.
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The required user inputs are highlighted in yellow. These are the plant nameplate capacity,

its operating capacity and the extent of CO, capture. In the case of Biomass combustion with

post-combustion capture, there is no “co-firing” variable. In order to use this model, the user

must provide these inputs within the operating ranges specified in Table 2.

The model outputs are highlighted in blue. These are the plant capital cost, the non-fuel

operating cost, the plant efficiency and the CO, emissions. These inputs and outputs can

then be entered into the BVCM technology database and the ESME data sheets.
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protected.
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Model Fidelity

In this section, we present an analysis of the fidelity of the proposed Biomass combustion
with post-combustion capture model. As can be observed from Figure 12, the proposed
model gives a quantitatively reliable description of the data available from WP2. Thus, this
model is considered suitable for data generation for the BVCM and ESME teams.
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Figure 12. Deviation of dedicated biomass combustion with amine scrubbing model outputs from

"experimental data"

7. MODEL OVERVIEW, APPLICATION RANGE AND USER-DOCUMENTATION: BIOMASS
CO-FIRING WITH OXY-COMBUSTION

Further, we note that in the case of the Biomass oxy-combustion technology, the applicable
operation ranges of this model are presented in Table 3.

Table 3: Operating range of co-firing biomass with oxy-combustion model

Lower bound Upper bound
Nameplate capacity (MWe) 300 1000
Capacity Factor (%) 60 100
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Co-firing extent (%)

50

CO2 capture extent (%)

95

A sample model has been developed in Microsoft Exce

™
I

. The models will be delivered to

the ETl in this format. A screenshot of a sample model for Biomass oxy-combustion is shown

in Figure 13 with some explanations.
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Figure 13: Screenshot of Biomass oxy-combustion model. Required user inputs are highlighted in
yellow, model parameters are highlighted in green and model outputs are highlighted in blue. Only
the cells corresponding to user inputs are editable, all other cells are protected.

A screen shot of the Biomass oxy-combustion model is presented in Figure 13. The model
has been implemented in MS Excel ™ and the worksheet has been password protected.

The required user inputs are highlighted in yellow. These are the plant nameplate capacity,

its operating capacity and the extent of CO, capture. In order to use this model, the user
must provide these inputs within the operating ranges specified in Table 3.
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The model outputs are highlighted in blue. These are the plant capital cost, the non-fuel
operating cost, the plant efficiency and the CO, emissions. These inputs and outputs can
then be entered into the BVCM technology database and the ESME data sheets
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Model Fidelity

In this section, we present an analysis of the fidelity of the proposed Biomass oxy-
combustion model. As can be observed from Figure 14, the proposed model gives a
qguantitatively reliable description of the data available from WP2. Thus, this model is
considered suitable for data generation for the BVCM and ESME teams.
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w
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&
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Figure 14: Deviation of Technology 3 model outputs from "experimental data"

8. SUMMARY
This document has presented the modelling requirements specification and modelling
strategy, as well as associated model parameterisation and user documentation for three
out of eight technology combinations within the TESBIC project. Co-fired biomass
combustion with amine scrubbing [T3], dedicated biomass combustion with amine scrubbing
[T4] and co-fired biomass with oxy-fuel combustion [T5] were the three technologies
presented here.
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APPENDIX 1: SUMMARY OF RAW DATA (DETAILED MODEL OUTPUTS) FOR T3

Case Data name Value Units
1- Base Nameplate capacity 500 MWe
(WP2)  Operating capacity 100 MWe
co-firing % 22 %
CO2 Capture extent % 90 %
Capital Cost 2079 k£/MWe
Non-fuel Operating Cost 16.57 £/MWhe
Generation efficiency 345 %
kg
CO2 emissions -97 CO2/MWhe
kg
SOx emissions 0.27 SOx/MWhe
kg
NOx emissions 0.27 NOx/MWhe
2-delta Nameplate capacity 500 MWe
(WP2)  Operating capacity 100 MWe
co-firing % 22 %
CO2 Capture extent % 0 %
Capital Cost 1280 k£/MWe
Non-fuel Operating Cost 8.86 £/MWhe
Generation efficiency 44.8 %
kg
CO2 emissions 599 CO2/MWhe
kg
SOx emissions 0.54 SOx/MWhe
kg
NOx emissions 0.324 NOx/MWhe
3-delta Explore sensitivity of capital cost of capture plant to degree of capture (Rao & Rubin data)

DoC (%)
70
70
80
80
85
85
90
90
95
95

Cap Cost
340
327
366
352
410
383
422
442
443
466
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4-delta

5-delta

5-delta

6-delta

This case explores sensitivity of system efficiency to degree of capture (Rao & Rubin data)

DoC (%)
Base 90
D1 95
D2 70
D3 0

Efficiency (%)
34.5

31.725

35.25

47

This case is used to explore sensitivity of plant cost to scale (CoalPerform data)

Size (MWe) cost (2006S)
400 1624527
600 2071959
900 2642629

Spec cost 2011 kf/Mwe

3045.988125
2589.94875
2202.190833

This case is used to explore sensitivity of plant cost to scale (CoalPerform data)

Size (MWe) efficiency (%)
400 37.7
600 37.8
900 38

This case is used to explore sensitivity of non-fuel cost to scale (CoalPerform data)

Size (MWe)
400
600
900

Emissions

Air

assume all N2
SOX

Cross check
SOX

$/MWh
6.4125
5.9625
5.055

1678
59928.57143
200

1342400
134.24
0.26848

0.1

0.0454
4.30332E-05
0.154919431
0.387298578

kf/MWe

t/hr
kmol/hr
mg/Nm3
Nm3/hr
kg/hr
kgSOx/Mwe

Ib/mm BTU (input)
kg/mm BTU (input)
kg/MJ

kg/MWhth
kg/Mwhe
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APPENDIX 2: SUMMARY OF RAW DATA (DETAILED MODEL OUTPUTS) FOR T4

Case Data name Value Units

1-

Base Nameplate capacity 49 MWe

(WP2) Operating capacity 100 MWe
CO2 Capture extent % 90 %
Capital Cost 5267 k£/MWe
Non-fuel Operating Cost 47.5 £/MWhe
Generation efficiency 232 %
CO2 emissions -1755 kg CO2/MWhe
SOx emissions 0.02 kg SOx/MWhe
NOx emissions 0.5 kg NOx/MWhe

2-

delta  Nameplate capacity 49 MWe

(WP2) Operating capacity 100 MWe
CO2 Capture extent % 0 %
Capital Cost 2246 k£/MWe
Non-fuel Operating Cost 22.9 £/MWhe
Generation efficiency 36 %
CO2 emissions 0 kg CO2/MWhe
SOx emissions 0.2 kg SOx/MWhe
NOx emissions 0.554 kg NOx/MWhe

3-

delta  This case is used to explore sensitivity of plant cost to scale (CoalPerform data)

Sp cost
Size (MWe) (k£/MWe) total cost £
49 5,267 258,083
70 4,567 319,669

delta  This case explores sensitivity of emissions and efficiency to degr. of capture (authors' models)

total
CC extent % efficiency % emissions  CO2 intensity
90 23.2  -1932.3108 -1756.646217
70 26.04  -1721.5673 -1205.097082
50 28.89  -1551.7346 -775.8672802
30 31.73  -1412.8462 -423.8538744
0 0
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APPENDIX 3: SUMMARY OF RAW DATA (DETAILED MODEL OUTPUTS) FOR T5

Case Data name Value Units

1-

Base Nameplate capacity 398 MWe

WP2 Operating capacity 100 %
co-firing % 20 %
CO2 Capture extent % 95 %
Capital Cost 2371 kf£/MWe 2371
Non-fuel Operating Cost 12.32 £/MWhe
Generation efficiency 3436 % 34.36
CO2 emissions -127 kg CO2/MWhe
SOx emissions 0.391 kg SOx/MWhe
NOx emissions 0.391 kg NOx/MWhe

2-delta Nameplate capacity 5189 MWe

WP2 Operating capacity 100 %
co-firing % 20 %
CO2 Capture extent % 0 %
Capital Cost 1276 k£/MWe
Non-fuel Operating Cost 8.86 £/MWhe
Generation efficiency 44.47 %
CO2 emissions 619.6 kg CO2/MWhe
SOx emissions 0.391 kg SOx/MWhe
NOx emissions 0.391 kg NOx/MWhe

3-delta As case 2, but with no co-firing to explore carbon intensity and efficiency with 0% co-firing (authors' calcs)

Generation efficiency 44.8 %
CO2 emissions 820 kg CO2/MWhe

4-delta Other gradients - use sensitivity of efficiency and cost to scale as per coal PC
(Chemical Process Equipment - Selection & Design, 2nd Edition, Couper et al.)
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