go to top scroll for more

Projects

Projects: Projects for Investigator
Reference Number EP/P033695/1
Title Fuel from biorenewable polyols: A new catalytic route
Status Completed
Energy Categories Renewable Energy Sources(Bio-Energy, Production of transport biofuels (incl. Production from wastes)) 100%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields PHYSICAL SCIENCES AND MATHEMATICS (Chemistry) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Dr S Taylor
No email address given
Chemistry
Cardiff University
Award Type Standard
Funding Source EPSRC
Start Date 01 September 2017
End Date 31 December 2020
Duration 40 months
Total Grant Value £812,140
Industrial Sectors Energy
Region Wales
Programme NC : Physical Sciences
 
Investigators Principal Investigator Dr S Taylor , Chemistry, Cardiff University (99.996%)
  Other Investigator Professor GJ Hutchings , Chemistry, Cardiff University (0.001%)
Dr DM Murphy , Chemistry, Cardiff University (0.001%)
Dr DJ Willock , Chemistry, Cardiff University (0.001%)
Professor R Catlow , Chemistry, University College London (0.001%)
  Industrial Collaborator Project Contact , Greenergy International Limited (UK) (0.000%)
Web Site
Objectives
Abstract Limited fossil fuel resources, an expanding global population and a desire for improved living standards will require ever more efficient and environmentally friendly routes to our chemical feedstocks. The chemical industry faces the challenge of moving towards more benign reagents, eliminating toxic by-products and increasing efficiency from an ever decreasing set of natural resources, while also exploring renewable ones. One way to address all of these concerns is to develop efficient catalytic processes that convert low value waste streams into more useful and valuable chemical products.An example of a process using a bio-renewable feedstock to partially replace a fossil source is biodiesel manufacture. This takes triglycerides and other fatty materials, derived from plant or animal sources, and reacts them with methanol. The methanol used is derived from nonsustainable fossil fuel resources. The process produces high quality biodiesel, together with glycerol as a waste product. Typically on a mass basis 10 tons of biodiesel produces 1 ton of glycerol as an undesired by-product. Waste glycerol is highly contaminated with sodium hydroxide and unconverted fats. Hence, presently the waste glycerol stream only has use as an inefficient low grade fuel, and represents a major environmental problem that keeps a brake on the future expansion of biodiesel production. There has been much research dedicated to finding commercially viable uses for waste glycerol, with a simple and efficient process for conversion to useful chemicals and fuels offering significant potential to deliver economic, environmental and societal impact.This works seeks to build on one of our recent discoveries. We have identified that simple metal oxide catalysts (MgO and CeO2) are very effective for the synthesis of methanol and other industrially important intermediates from bio-renewable glycerol. This new green technology represents a potential paradigm shift in the manufacture of methanol. At present methanol is produced by a two-step process requiring large scale to achieve the necessary efficiency. Methanol is a major commodity chemical, and today over 50 Mt pa are produced globally. There is considerable potential in the development of a new one step process using green environmentally sound reaction conditions. Aqueous glycerol conversion into methanol and other chemicals, using mild reaction conditions, can be achieved, but a step change is required to broaden the scope of this chemistry and improve product yield. Importantly additional hydrogen is not required as water acts as a hydrogen transfer reagent. Furthermore, the process can operate using a crude glycerol stream directly from a biodiesel source, and the requirement for expensive purification circumvented.We will combine experimental and theoretical studies in an integrated approach, to develop a detailed fundamental understanding of the new catalytic chemistry we have recently discovered. Theory has the potential to guide experimental studies and also deliver fundamental understanding of new catalysts and processes, but this approach is most effective when theory is embedded within an experimental programme with both strands working closely together. Achieving a detailed fundamental understanding of the chemistry will support development of improved catalysts and technology. The experimental approach will build on our experience and expertise of catalyst design. It will use a combination of steady-state and transient studies to evaluate catalyst performance and elucidate key steps in the reaction mechanism. Detailed catalyst characterisation, both ex situ and in situ, will provide essential information on catalyst structure and chemical properties. Once structure activity relationships are established, improved catalysts will be designed making use of our expertise in preparing catalysts with controlled composition, morphology and structure.
Data

No related datasets

Projects

No related projects

Publications

No related publications

Added to Database 13/11/18