go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number EP/D078199/1
Title Unmixed Steam Reforming of Liquid Fuels From Biomass and Waste for Hydrogen Production
Status Completed
Energy Categories Hydrogen and Fuel Cells(Hydrogen, Hydrogen production) 50%;
Renewable Energy Sources(Bio-Energy, Production of other biomass-derived fuels (incl. Production from wastes)) 50%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields PHYSICAL SCIENCES AND MATHEMATICS (Chemistry) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Dr V Dupont
No email address given
Energy Resources Research Unit
University of Leeds
Award Type Standard
Funding Source EPSRC
Start Date 02 January 2007
End Date 01 May 2010
Duration 40 months
Total Grant Value £344,835
Industrial Sectors Energy; Environment
Region Yorkshire & Humberside
Programme Process Environment and Sustainability
 
Investigators Principal Investigator Dr V Dupont , Energy Resources Research Unit, University of Leeds (99.999%)
  Other Investigator Dr JM Jones , Energy Resources Research Unit, University of Leeds (0.001%)
  Industrial Collaborator Project Contact , Johnson Matthey plc (0.000%)
Project Contact , Tyrolysis Co Ltd (0.000%)
Web Site
Objectives
Abstract Unmixed steam reforming is a promising alternative process of hydrogen production. It relies on the cyclic oxidation of a bed of nickel-based material and on the simultaneous regeneration of a CO2-sorbent under airflow to provide the heat necessary for the steam reforming reaction. The latter occurs subsequently under a fuel/steam flow while the airflow is interrupted. The effluent gas of the fuel/steam step is much higher in hydrogen than the single reactor equivalent conventional process, andthe oxidised catalyst is regenerated by reduction from exposure to the fuel. Because the carbon produced during the steam reforming step is subsequently burned under the airflow, the process is not sensitive to the gradual loss of conversion efficiency exhibited by the conventional process. Furthermore, in the unmixed steam reforming process, sulphur in the fuel is claimed to also undergo oxidation under the airflow rather than irreversibly poisoning the reforming catalyst. This process mostimportantly claimed to be economical at small scale, unlike the conventional process, and could thus be used in distributed power generation. These advantages open up opportunities for this novel process to apply to a whole range of fuels with coking tendencies and/or sulphur content, such as the combustible liquid mixtures derived from biomass or specific industrial / transportation waste. When using a suitable CO2-sorbent in the reformer, the dry hydrogen content in the reformate gas reaches above 80% (90+% when using on methane fuel). In this case, most of the produced CO2 and the N2 from the airflow effluent leave the reactor separately to the H2-rich reformate gas, and can potentially be easily filtered and stored. In the now completed GR/R50677/01 project, we showed the sequence via which the various reactions involved in the cycle proceeded, and we found clear evidence of the insensitivity of the process to coking. We concluded that certain developments would improve on the original process. These are listed in the objectives
Publications (none)
Final Report (none)
Added to Database 01/01/07