UKERC Energy Data Centre: Projects

Projects: Projects for Investigator
UKERC Home >> UKERC Energy Data Centre >> Projects >> Choose Investigator >> All Projects involving >> EP/K035355/1
 
Reference Number EP/K035355/1
Title Bio-inspired sulfide nanocatalysts: From proof of concept to 'real' catalysis
Status Completed
Energy Categories FOSSIL FUELS: OIL, GAS and COAL(CO2 Capture and Storage, CO2 capture/separation) 100%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields PHYSICAL SCIENCES AND MATHEMATICS (Chemistry) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Dr NH De Leeuw
No email address given
Chemistry
University College London
Award Type Standard
Funding Source EPSRC
Start Date 01 November 2013
End Date 31 December 2014
Duration 14 months
Total Grant Value £1,086,897
Industrial Sectors Energy; Chemicals
Region London
Programme Energy : Energy
 
Investigators Principal Investigator Dr NH De Leeuw , Chemistry, University College London (99.996%)
  Other Investigator Dr J Darr , Chemistry, University College London (0.001%)
Professor R Catlow , Chemistry, University College London (0.001%)
Dr A Beale , Chemistry, University College London (0.001%)
Dr D Brett , Chemical Engineering, University College London (0.001%)
  Industrial Collaborator Project Contact , Johnson Matthey plc (0.000%)
Project Contact , European Synchrotron Radiation Facility (ESRF), France (0.000%)
Project Contact , Air Fuel Synthesis Ltd (0.000%)
Project Contact , PV3 Technologies Ltd (0.000%)
Web Site
Objectives
Abstract Sustainable energy and climate change are areas of global societal concern, which is a recognised strategic priority area of the RCUK through their Energy Programme, managed by EPSRC. Catalysis, moreover, is the lynchpin of a large number of industrial processes, which are instrumental in maintaining global wealth and health, as well as playing a key role in developing processes that are both environmentally and economically sustainable.Despite the high thermodynamic stability of CO2, biological systems are capable of both activating the molecule and converting it into a range of organic molecules, all of which under moderate conditions. It is clear that, if we were able to emulate Nature and successfully convert CO2 into fuel or useful chemical intermediates without the need for extreme reaction conditions, the benefits would be enormous: One of the major gases responsible for climate change would become an important feedstock for the fuel, chemical and pharmaceutical industries!Iron-nickel sulfide membranes formed in the warm, alkaline springs on the Archaean ocean floor are increasingly considered to be the early catalysts for a series of chemical reactions leading to the emergence of life. The anaerobic production of acetate, formaldehyde, amino acids and the nucleic acid bases - the organic precursor molecules of life - are thought to have been catalyzed by small cubane (Fe,Ni)S clusters (for example Fe5NiS8), which are structurally similar to the surfaces of present day sulfide minerals such as greigite (Fe3S4) and mackinawite (FeS).Contemporary confirmation of the importance of sulfide clusters as catalysts is provided by a number of proteins essential to modern anaerobic life forms, such as ferredoxins, hydrogenases, carbon monoxide dehydrogenase (CODH) or acetylcoenzyme A synthetase (ACS), all of which retain cubane (Fe,Ni)S clusters with a greigite-like local structure, either as electron transfer sites or as active sites to metabolise volatiles such as H2, CO and CO2.In Phase 1 of the project, we have used a comprehensive combination of computational, synthetic and electrochemical expertise to mimic Nature and produce Fe-S and Ni-doped Fe-S nanoparticles to catalyse the conversion of CO2. Careful and sensitive testing of the computationally designed materials, prepared through novel synthesis routes, has shown unequivocably that the nanoparticles have the power to adsorb CO2 and reduce it to formic acid - a useful chemical intermediate. A particularly promising aspect is that the catalytic conversion of CO2 takes place at room pressure and temperature and at the sort of low voltages that could be obtained from solar energy, thus making it a sustainable process. Following this success, in Phase 2 of the project we aim to optimise the catalysts to improve yield and adapt for further product formation e.g. methanol, acetate and, eventually, dimethyl ether (DME) - all proven pre-cursors to fuels and fine chemicals - and to develop materials and processes that are robust enough to perform under 'real' conditions.Work in this area, in collaboration with a number of industrial partners, requires the dove-tailed interplay of experiment and computation to design, synthesise, characterise and catalytically test the potential transition metal-sulfide nano-catalysts, followed by scale-up of the nanoparticle production and evalulation in an industrial environment. The aim at the end of Phase 2 is to have created a commercially viable catalytic system for CO2 reduction, that performs in an industrially relevant environment
Publications (none)
Final Report (none)
Added to Database 18/03/13