go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number BB/J000124/1
Title The Reduction of Carbon Dioxide by Enzymes Adsorbed on Electrodes: from Mechanistic Studies to Bioinspired Catalysts
Status Completed
Energy Categories Other Power and Storage Technologies(Energy storage) 25%;
Fossil Fuels: Oil Gas and Coal(CO2 Capture and Storage, CO2 storage) 25%;
Hydrogen and Fuel Cells(Fuel Cells) 25%;
Fossil Fuels: Oil Gas and Coal(CO2 Capture and Storage, CO2 capture/separation) 25%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields PHYSICAL SCIENCES AND MATHEMATICS (Chemistry) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Dr E Reisner
No email address given
Chemistry
University of Cambridge
Award Type Research Grant
Funding Source BBSRC
Start Date 26 November 2012
End Date 25 November 2015
Duration 36 months
Total Grant Value £310,123
Industrial Sectors Transport Systems and Vehicles
Region East of England
Programme
 
Investigators Principal Investigator Dr E Reisner , Chemistry, University of Cambridge (100.000%)
Web Site
Objectives This grant is linked to BB/I026367/1.
The inexpensive capture and conversion of carbon dioxide into a valuable and sustainable energy carrier such as formic acid is of major and immediate economic interest. The UK White Paper on Energy 2007 underlined the fact that energy is essential for our lives and our economy. The reduction of carbon dioxide emissions, and ensuring a secure supply of clean and affordable energy were identified as major objectives. Thus, it is imperative that we react fast to develop renewable energy technologies. The target of this proposal is to lay a foundation for a new direction of industrially relevant research in the renewable production of carbon-based fuels. In this project we aim to understand how to activate and reduce CO2, by studying enzymes as model systems for the development of synthetic catalysts. At this stage, these are basic research aims, with academic beneficiaries, and commercialisation of a product is not an aim of the current proposal (as enzymes are very precious materials and not cost-competitive with current energy generation). But, after successful completion of this project, we will seek a close industrial partnership to develop a catalyst and devices, to apply the principles learnt from this BBSRC-funded project and to replace our enzymes with small molecule equivalents. Our ultimate aim is the production of a low-cost product capable of reducing carbon dioxide, ideally using sunlight. Our proposed research project combines a high degree of novelty and impact, with a high probability of achieving our stated goals, with immediate impact on UK academic science, and longer-term impact on UK industry. This project will establish a new academic partnership between Judy Hirst, Medical Research Council, and Erwin Reisner, University of Cambridge, forming a nucleus around which future networks and collaborations will be built. Within this project we will provide top-quality cross-disciplinary training for two BBSRC PDRAs (plus at least four University of Cambridge undergraduate students, who will undertake projects related to this proposal), to provide expertise in the development of alternative energy technologies, an area of critical scientific, technological and economic importance for the future.
Abstract Carbon dioxide (CO2) is a thermodynamically and kinetically stable molecule. It is easily formed by the oxidation of organic molecules, during combustion or respiration, but difficult to chemically activate or reduce. The production of reduced carbon compounds from CO2 is an attractive proposition, because carbon-neutral energy sources could be used to generate fuel resources and sequester atmospheric CO2. However, available methods for CO2 reduction are slow, energetically wasteful, and produce mixtures of products. In a preliminary study we demonstrated that a tungsten-containing formate dehydrogenase (W-FDH) enzyme can be adsorbed to an electrode surface, to catalyse the efficient electrochemical reduction of CO2 to formate: catalysis is fast, thermodynamically reversible, and specific. Formate is an important feedstock, a stable intermediate in the conversion of CO2 to methanol and methane, and a viable energy source in its own right. This proposal aims to define the mechanism of the electrocatalytic reduction of CO2 to formate by W- FDH enzymes, using an interdisciplinary approach that combines state of the art electrochemical studies with an array of biochemical and mechanistic techniques. We aim also to 'narrow the gap' between the highly active enzymes and the most promising synthetic catalysts: we aim to provide proof-of-principle devices for exploiting the interconversion of CO2 and formate, and to compare the enzymes and synthetic catalysts directly. Therefore, we aim to establish an experimental and theoretical foundation for the development of robust synthetic catalysts for future application in carbon capture, energy storage, and regenerative fuel cell devices.
Publications (none)
Final Report (none)
Added to Database 14/04/14