go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number BB/J001120/1
Title Development of Geobacillus thermoglucosidasius as a robust platform for production of chemicals from renewables through modelling and experimentation
Status Completed
Energy Categories Not Energy Related 10%;
Renewable Energy Sources(Bio-Energy, Production of other biomass-derived fuels (incl. Production from wastes)) 45%;
Renewable Energy Sources(Bio-Energy, Production of transport biofuels (incl. Production from wastes)) 45%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields BIOLOGICAL AND AGRICULTURAL SCIENCES (Biological Sciences) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Prof DJ (David ) Leak
No email address given
Biology and Biochemistry
University of Bath
Award Type Research Grant
Funding Source BBSRC
Start Date 23 January 2012
End Date 15 April 2012
Duration 3 months
Total Grant Value £436,808
Industrial Sectors Pharmaceuticals and Biotechnology
Region South West
Programme
 
Investigators Principal Investigator Prof DJ (David ) Leak , Biology and Biochemistry, University of Bath (99.999%)
  Other Investigator Dr J (John ) Pinney , Life Sciences - Biology, Imperial College London (0.001%)
Web Site
Objectives This grant is linked to BB/J002410/1.
Who will benefit from this research? Wider Academic Community: This work will raise our understanding of the metabolic physiology of Geobacillus spp to a level approaching that of better characterised organisms such as Bacillus subtilis. It will produce a set of freely available genomic sequences, annotated with extensive experimental support, and a similarly supported set of genome-scale metabolic models. These will be released through online databases (eg NCBI and the RAST server), publication in relevant academic journals and presentations at national and international scientific meetings. Part of this work will focus on the issue of catabolite regulation during growth in the complex mixtures of monomeric and polymeric carbohydrates found in lignocellulosic hydrolysates, which should be of interest to both academic and industrial researchers working on Cleantech processes. Commercial Private Sector: This research will directly benefit the industrial partner, TMO Renewables Ltd (TMO), which has developed an integrated process technology for converting waste biomass into valuable products. TMO's business model is to license their technology to industrial partners who own and operate the facilities. While the initial focus has been on ethanol production, TMO wish to expand the range of chemicals that can be produced from their technology platform. The ability to switch products or add extra products without a major rebuild of the original plant is very attractive and would offer a more flexible (and hence lower risk) commercial proposition to their industrial partners. More broadly, the results of this programme should benefit all companies operating in the area of chemicals from renewables. Primarily, this will be through furthering our understanding of catabolite regulation (see above). However, a number of companies (including Biocaldol and Green Biologics in the UK) recognise that thermophiles such as Geobacillus spp, that express a repertoire of glycosidehydrolases, can offer process advantages in the conversion of lignocellulosic wastes. So, we expect that both the genomic information and the metabolic engineering approach will have wide industrial interest and potential for application. By collaborating with an established industrial partner, there is a realistic opportunity to rapidly exploit the modelling, regulatory information and metabolic engineering strategies arising for the production and commercialisation of new products. TMO has recently signed a commercial contract with a US Cleantech Company (Fiberight) to build multiple community-scale plants which will convert municipal waste into ethanol. There will therefore be multiple opportunities over the next 5 years to incorporate a demonstration scale application in these commercial plants. National and International Perspective: Climate change: A primary driver for the move from fossil fuels to fuels and chemicals fromwaste, or sustai nably derived renewables, is the reduction in greenhouse gas (GHG) emissions. An efficiently operated biorefinery using cellulosic substrates should be able to deliver an 80% reduction in GHG emissions compared to its fossil fuel equivalent (based on ethanol production). This will help meet national and international targets for use of renewables and mitigation of climate change. Green jobs: The successful delivery of this project will have an impact on delivering green jobs within the UK and further afield - a more diversified, and hence valuable, technology platform will be more attractive to new customers and take up of the technology will be greater, promoting growth within the Cleantech sector. For the PDRAs, the possibility of working closely with an established and developing Cleantech company, including spending time working at TMO, will give them an excellent perspective of both academic and industrial research environments, which should be invaluable for their future employment prospects.
Abstract The need to produce fuels and chemicals from renewable lignocellulose-derived feedstocks, thereby reducing the use of fossil fuels, is generally recognised. However, there are many challenges to achieving commercial viability, ranging from cost-effective release of fermentable carbohydrates to optimised re-direction of metabolic flux. Moving beyond ethanol production, the rationale for using yeast diminishes, due to its limited substrate range. Working with the applicants, TMO Renewables have engineered the thermophile, Geobacillus thermoglucosidasius, to create a metabolically versatile ethanologen and used this as the basis for a commercially-viable process using treated municipal solid waste as a substrate. This has served not only to demonstrate the potential of the organism, but also to highlight the problems of engineering a relatively poorly characterised organism. In this project, starting with the genome sequence of G. thermoglucosidasius NCIMB 11955 provided by TMO, we will: develop and experimentally validate a genome scale metabolic model to support future metabolic engineering of this organism; explore the mechanism(s) of catabolite repression operating in both simple laboratory and complex industrial media and; combine these findings to produce a strain optimally engineered for 2-butanol production from mixed sugars in the absence of catabolite repression. While the overall aim is to increase the potential of Geobacillus spp as industrial organisms, this will be done by improving our fundamental understanding of the biochemistry and physiology of this increasingly important genus. In particular, we will apply RNA-seq, supported by gene disruption and detailed enzyme characterisation, to improve the genome annotation and explore catabolite regulation. Combined with comparative bioinformatics against Bacillus spp, we expect to rapidly highlight the differences between the genera, enabling us to focus on features specific to Geobacillus spp.
Publications (none)
Final Report (none)
Added to Database 07/10/13