go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number EP/I036230/1
Title Nanostructured Thermoelectric Oxides for Energy Generation: A Combined Experimental and Modelling Investigation
Status Completed
Energy Categories Energy Efficiency(Other) 50%;
Other Power and Storage Technologies(Electric power conversion) 50%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields PHYSICAL SCIENCES AND MATHEMATICS (Metallurgy and Materials) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Prof R (Bob ) Freer
No email address given
Materials
University of Manchester
Award Type Standard
Funding Source EPSRC
Start Date 01 December 2011
End Date 30 November 2014
Duration 36 months
Total Grant Value £362,169
Industrial Sectors Energy
Region North West
Programme NC : Physical Sciences
 
Investigators Principal Investigator Prof R (Bob ) Freer , Materials, University of Manchester (99.999%)
  Other Investigator Dr C Leach , Materials, University of Manchester (0.001%)
  Industrial Collaborator Project Contact , Queen Mary, University of London (0.000%)
Project Contact , Jaguar Land Rover Limited (0.000%)
Project Contact , Morgan Electro Ceramics (0.000%)
Project Contact , Tsinghua University (THU). Beijing (0.000%)
Project Contact , EMPA (Swiss Federal Laboratories for Materials Testing and Research) (0.000%)
Project Contact , European Thermodynamics Ltd (0.000%)
Project Contact , Ricardo AEA Limited (0.000%)
Project Contact , Rolls-Royce PLC (0.000%)
Project Contact , University of Padua (Padova), Italy (0.000%)
Web Site
Objectives
Abstract The Seebeck effect is a thermoelectric effect whereby a temperature gradient across a material is converted to a voltage, which can be exploited for power generation. The growing concern over fossil fuels and carbon emissions has led to detailed reviews of all aspects of energy generation and routes to reduce consumption. Thermoelectric (TE) technology, utilising the direct conversion of waste heat into electric power, has emerged as a serious contender, particular for automotive and engine related applications. Thermoelectric power modules employ multiple pairs of n-type and p-type TE materials. Traditional metallic TE materials (such as Bi2Te3 and PbTe), available for 50 years, are not well suited to high temperature applications since they are prone to vaporization, surface oxidation, and decomposition. In addition many are toxic. Si-Ge alloys are also well established, with good TE performance at temperatures up to 1200K but the cost per watt can be up to 10x that of conventional materials. In the last decade oxide thermoelectrics have emerged as promising TE candidates, particularly perovskites (such as n-type CaMnO3) and layered cobaltites (e.g. p-type Ca3Co4O9) because of their flexible structure, high temperature stability and encouraging ZT values, but they are not yet commercially viable. Thus this investigation is concerned with understanding and improving the thermoelectric properties of oxide materials based on CaMnO3 and ZnO. Furthermore, not only do they represent very promising n-type materials in their own right but by using them as model materials with different and well-characterised structures we aim to use them to identify quantitatively how different factors control thermoelectric properties.The conversion efficiency of thermoelectric materials is characterised by the figure of merit ZT (where T is temperature); ZT should be as high as possible. To maximise the Z value requires a high Seebeck coefficient (S), coupled with small thermal conductivity and high electrical conductivity. In principle electrical conductivity can be adjusted by changes in cation/anion composition. The greater challenge is to concurrently reduce thermal conductivity. However in oxide ceramics the lattice conductivity dominates thermal transport since phonons are the main carriers of heat. This affords the basis for a range of strategies for reducing heat conduction; essentially microstructural engineering at the nanoscale to increase phonon scattering. The nanostructuring approaches will be: (i) introduction of foreign ions into the lattice, (ii) development of superlattice structures, (iii) nanocompositing by introducing texture or nm size features (iv) development of controlled porosity of different size and architecture, all providing additional scattering centres. Independently, TE enhancement can also be achieved by substitution of dopants to adjust the electrical conductivity. By systematically investigating the effect of nanostructuring in CaMnO3 and ZnO ceramics, plus the development of self-assembly nanostructures we will be able to define the relative importance of the factors and understand the mechanisms controlling thermal and electron transport in thermoelectric oxides.A key feature of the work is that we will adopt an integrated approach, combining advanced experimental and modelling techniques to investigate the effect of nanostructured features on the properties of important thermoelectric oxide. The modelling studies will both guide the experimentalists and provide quantitative insight into the controlling mechanisms and processes occurring at the atom level to the grain level, while the experiments will provide a rigorous test of the calculation of the different thermoelectric properties. We will assess the mechanical performance of optimised n-type and p-type materials, and then construct thermoelectric modules which will be evaluated in automobile test environments
Publications (none)
Final Report (none)
Added to Database 28/05/12