UKERC Energy Data Centre: Projects

Projects: Projects for Investigator
UKERC Home >> UKERC Energy Data Centre >> Projects >> Choose Investigator >> All Projects involving >> EP/P02212X/1
 
Reference Number EP/P02212X/1
Title Extension and optimisation of the EPOCH code
Status Completed
Energy Categories NUCLEAR FISSION and FUSION(Nuclear Fusion) 100%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields PHYSICAL SCIENCES AND MATHEMATICS (Physics) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Dr K Bennett
No email address given
Physics
University of Warwick
Award Type Standard
Funding Source EPSRC
Start Date 01 September 2017
End Date 31 August 2019
Duration 24 months
Total Grant Value £236,478
Industrial Sectors Energy
Region West Midlands
Programme NC : Infrastructure
 
Investigators Principal Investigator Dr K Bennett , Physics, University of Warwick (99.999%)
  Other Investigator Prof TD (Tony ) Arber , Physics, University of Warwick (0.001%)
Web Site
Objectives
Abstract Plasmas are fully ionized gasses that arise naturally at high temperatures. They are the most common state of matter in the Universe but the high temperatures usually required make them rare on Earth. For engineering, terrestrial applications plasmas are important as the basic fuel for any potential fusion reactor. These rely on heating a gas of hydrogen isotopes to 100's of millions of degrees Centigrade. Such attempts to achieve fusion using lasers at the National Ignition Facility (NIF) in California have encountered problems. One of the potential causes of this lack of performance on NIF is the deleterious influence of electrons accelerated to higher than the ambient electron temperature, so called hot-electrons. These are caused by complex laser-plasma interactions. Any modeling of such processes must follow the full kinetics of the plasma - that is follow the motion of millions of individual particles evolving in the plasma under the influence of the electro-magnetic force. The most common sort of computer code that does this is called a particle-in-cell (PIC) code.This project aims to complete a software refresh and update of the existing UK community PIC code EPOCH. This code has been established as a leading PIC code over the last few years since the first major releases of the code were publicized. The growing UK and international community of users, currently over 400, has defined a set of new physics packages and optimisations to EPOCH that will establish it as a leading PIC code research tool for many years to come. It is proposed to recruit a young researcher; train them in research software engineering and PIC codes and over two years complete the full refresh. The new science that the upgraded EPOCH will allow us to undertake includes at scale simulations of the laser-plasma problems in NIF, hot-electron acceleration in advance fusion concepts such as shock ignition and fast ignition. Beyond fusion EPOCH can be used to simulate experiments designed to build compact electron and proton (hadron) accelerators, the latter with an aim of delivering a device for medical hadron therapy. At the more exotic end of plasma research are ideas based around the Extreme Light Infrastructure ELI - a multi-national collaboration based around several EU cites which use the most powerful lasers ever built. At these intensities the electron relativisitic mass approaches that of the proton and QED effects allow the generation of gamma-rays for nuclear physics research and dense electron-positron pair plasmas. All of these experiments require PIC codes to design targets and interpret results. EPOCH will deliver that capability to the UK. Currently EPOCH is being used for many of these applications but the refresh proposed here takes PIC codes into a new realm of fidelity and opens new science not accessible with the existing code
Publications (none)
Final Report (none)
Added to Database 04/01/18