go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number EP/F019114/1
Title The study of nanoporous cubic crystals derived from phthalocyanine.
Status Completed
Energy Categories Not Energy Related 75%;
Fossil Fuels: Oil Gas and Coal(CO2 Capture and Storage, CO2 capture/separation) 25%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields PHYSICAL SCIENCES AND MATHEMATICS (Chemistry) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Professor N McKeown
No email address given
Chemistry
Cardiff University
Award Type Standard
Funding Source EPSRC
Start Date 01 June 2008
End Date 31 May 2010
Duration 24 months
Total Grant Value £220,968
Industrial Sectors Chemicals; Manufacturing
Region Wales
Programme Materials, Mechanical and Medical Eng, Physical Sciences
 
Investigators Principal Investigator Professor N McKeown , Chemistry, Cardiff University (100.000%)
Web Site
Objectives
Abstract We have discovered that a simple derivative of phthalocyanine (2,3,9,10,16,17,23,24-octa(2',6'-di-iso-propylphenoxy)phthalocyanine) forms cubic crystals which contain interconnected, solvent-filled voids of 8 nm3 volume. The voids are defined by six phthalocyanines in a cubic arrangement with the metal ion of the macrocycle embedded at the centre of each face of the cube. The crystal structure allows unhindered access of small molecules (i.e. solvent and ligands) throughout the crystal so that it acts as a nanoporous material and it is possible to exert fine control over the coordination chemistry at the metal cations. The proposed programme of research involves realising the potential of this system in heterogeneous catalysis to perform biomimetic reactions of environmental relevance; in particular oxidation, dechlorination reactions and CO2 hydration. The possibility of using axial ligands to mimic the 'proximal' ligands found at the active site of enzymes may allow the reactivity and selectivity of the system to be enhanced. To test the potential of the various cubic structures, standard oxidation and dechlorination reactions will be carried out with systematic variations of metal cation, included solvent and proximal ligand. We will also assess the carbonic anhydrase-like activity of the zinc-containing crystals for the hydration of CO2 which is of relevance to sequestration technology
Publications (none)
Final Report (none)
Added to Database 08/11/07