Projects: Projects for Investigator |
||
Reference Number | EP/K014471/1 | |
Title | Silicon Compatible GaN Power Electronics | |
Status | Completed | |
Energy Categories | Not Energy Related 95%; Energy Efficiency(Industry) 5%; |
|
Research Types | Basic and strategic applied research 100% | |
Science and Technology Fields | PHYSICAL SCIENCES AND MATHEMATICS (Chemistry) 25%; PHYSICAL SCIENCES AND MATHEMATICS (Physics) 25%; PHYSICAL SCIENCES AND MATHEMATICS (Metallurgy and Materials) 25%; ENGINEERING AND TECHNOLOGY (Electrical and Electronic Engineering) 25%; |
|
UKERC Cross Cutting Characterisation | Not Cross-cutting 100% | |
Principal Investigator |
Professor I Thayne No email address given Aerospace Engineering University of Glasgow |
|
Award Type | Standard | |
Funding Source | EPSRC | |
Start Date | 01 March 2013 | |
End Date | 31 August 2018 | |
Duration | 66 months | |
Total Grant Value | £6,196,718 | |
Industrial Sectors | Aerospace; Defence and Marine; Communications; Electronics | |
Region | Scotland | |
Programme | NC : ICT | |
Investigators | Principal Investigator | Professor I Thayne , Aerospace Engineering, University of Glasgow (99.989%) |
Other Investigator | Professor P Houston , Electronic and Electrical Engineering, University of Sheffield (0.001%) Professor CJ Humphreys , Materials Science & Metallurgy, University of Cambridge (0.001%) Professor A Forsyth , Electrical & Electronic Engineering, University of Manchester (0.001%) Professor CM Johnson , Electrical and Electronic Engineering, University of Nottingham (0.001%) Dr S (Sergei ) Novikov , Physics and Astronomy, University of Nottingham (0.001%) Professor CT (Tom ) Foxon , Physics and Astronomy, University of Nottingham (0.001%) Professor DJ Paul , Aerospace Engineering, University of Glasgow (0.001%) Dr E Wasige , Aerospace Engineering, University of Glasgow (0.001%) Dr DAJ Moran , Aerospace Engineering, University of Glasgow (0.001%) Professor M Kuball , Physics, University of Bristol (0.001%) Professor PR Chalker , Centre for Materials and Structures, University of Liverpool (0.001%) |
|
Industrial Collaborator | Project Contact , DSTL - Defence Science and Technology Laboratory (0.000%) Project Contact , SAFC Hitech (0.000%) Project Contact , NXP Semiconductors (0.000%) Project Contact , International Rectifier (0.000%) Project Contact , Kelvin Nanotechnology Ltd (0.000%) Project Contact , GaN Systems Ltd (0.000%) Project Contact , IQE Plc (0.000%) Project Contact , Oxford Instruments plc (0.000%) Project Contact , Plessey Semiconductors Ltd (0.000%) Project Contact , Semefab Scotland Ltd (0.000%) Project Contact , NMI (National Microelectronics Institute) (0.000%) Project Contact , Dynex Semiconductor Ltd (0.000%) |
|
Web Site | ||
Objectives | ||
Abstract | Power electronics are seldom seen, yet our daily lives would be very different without them. Power electronics are crucial to improving the battery life of a mobile phone & to maximising the efficiency of high-voltage transmission lines. They are found in railways & hybrid cars, in TVs & energy efficient lighting. Although not perhaps obvious, power electronics are vital to meeting the CO2 reduction targets set by Government. The use of these technologies in the control of electrical machines in factories is predicted to save up to 9% of total electrical energy consumption in the UK. In addition, power electronics are going to be key to controlling the renewable energy sources of the future low carbon economy, which will be producing 30% of our energy by 2020.With a predicted 50% improvement in energy efficiency over current silicon devices, transistors produced from gallium nitride (the same semiconductor material used in low energy LEDs) have the potential to revolutionise power electronics. By working together, research teams from the Universities of Glasgow, Cambridge, Nottingham, Liverpool, Bristol, Sheffield & Manchester will develop & prototype highly efficient, gallium nitride power electronics devices with world-leading performance. Critically, routes to manufacture in a silicon wafer fabrication facility will be developed. Making these step changes is an outstanding opportunity for the 19 silicon manufacturing facilities in the UK, as the global power electronics market is currently worth 135 billion, & growing at a rate of 10% per annum. The outcomes will also underpin next generation applications in high-value manufacturing sectors including traditional UK strengths such as the automotive, aerospace, consumer electronics, lighting, healthcare & energy industries. .Not surprisingly, global competition in the area of gallium nitride power electronics is fierce, & a number of high profile research projects have recently been established in urope, the US & the Far East. This flagship UK project is a consortium of world-leading University research groups who together have the skill, expertise & critical mass to compete successfully against the rest of the world. To achieve our challenging goals, Cambridge, Nottingham & Sheffield will together focus on the growth & evaluation of gallium nitride materials on silicon substrates to produce the starting semiconductor wafers required for manufacture. Bristol & Nottingham will perform detailed simulations of device performance to inform the choice of gallium nitride materials & also the specific transistor structures for the various applications. Glasgow & Liverpool will combine expertise to develop procedures for the manufacture of gallium nitride transistors using "silicon friendly" approaches & then combine these processes to produce world-leading devices. Manchester, Nottingham & Bristol will evaluate the transistors in measurement systems which mimic the various real world applications for which power electronics are required. Throughout the project, there will be continual feedback between the teams to ensure that optimsied devices are produced.For scientific, technical & economic reasons, a number of UK based companies spanning semiconductor wafer growth, silicon based power electronics device manufacture, & systems suppliers using power electronics components have aligned themselves with the project, keen to exploit the outcomes of the research. By developing world-leading gallium nitride power electronics components using silicon manufacturing approaches, this project, which is directly aligned with the UK Engineering and Physical Sciences Research Council energy efficiency & manufacturing the future strategies , will deliver internationally leading scientific outputs & next generation technologies which UK companies will be in a position to quickly take forward thereby maximising both academic impact & economic benefit | |
Data | No related datasets |
|
Projects | No related projects |
|
Publications | No related publications |
|
Added to Database | 26/09/13 |