go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number EP/T002808/1
Title Simultaneous Corrosion/Irradiation Testing in Lead and Lead-Bismuth Eutectic: The Radiation Decelerated Corrosion Hypothesis (RC-3)
Status Started
Energy Categories Nuclear Fission and Fusion(Nuclear Fission, Nuclear supporting technologies) 100%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields PHYSICAL SCIENCES AND MATHEMATICS (Chemistry) 20%;
PHYSICAL SCIENCES AND MATHEMATICS (Physics) 20%;
PHYSICAL SCIENCES AND MATHEMATICS (Metallurgy and Materials) 60%;
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Dr F Hofmann

Engineering Science
University of Oxford
Award Type Standard
Funding Source EPSRC
Start Date 01 January 2020
End Date 30 September 2024
Duration 57 months
Total Grant Value £543,314
Industrial Sectors Energy
Region South East
Programme Energy : Energy
 
Investigators Principal Investigator Dr F Hofmann , Engineering Science, University of Oxford (99.998%)
  Other Investigator Dr AJ Wilkinson , Materials, University of Oxford (0.001%)
Dr M P Moody , Materials, University of Oxford (0.001%)
Web Site
Objectives
Abstract Nuclear fission power plays a vital role in supplying the UK with low carbon footprint electricity. The current UK fleet of nuclear reactors is rapidly ageing, and all of these reactors are scheduled to be removed from service within the next 12 years. Without replacement, the electricity they generate, ~20% of total UK electricity, will need to be provided by other sources, e.g. fossil fuel power stations. This would be detrimental to UK greenhouse gas emissions and contribution to climate change. For successful decarbonisation by the 2050s, UK new build of future fission reactors is urgently needed.Liquid lead (Pb) and lead-bismuth eutectic (LBE) cooled fast reactors promise the best power density and economics among fission reactors. However, for decades now the development of these reactors has been stuck because of concerns about the combined effect of Pb/LBE corrosion and irradiation on the structural materials they would use. Moreover, the problem is that to actually test how bad the corrosion is, one would either have to setup an experiment in an existing research reactor or indeed build a whole new Pb or LBE-cooled research reactor. This would be prohibitively costly, slow and it would be challenging to build and license a test reactor without initial understanding and prediction of material performance. A much faster way of studying combined irradiation and corrosion of materials for Pb/LBE cooled fast reactors is needed!Here we address this problem: Our project partners at MIT, USA, have developed a new, one-of-a-kind facility that allows the simultaneous exposure of materials to Pb/LBE corrosion and insitu irradiation with protons. The protons are used to mimic the effect of neutrons in a fission reactor. Whilst protons don't perfectly mimic the damage caused by neutrons, they capture the key mechanisms well. Most importantly these experiments are much quicker and cheaper than e.g. in-reactor material testing. Using this new tool, we will explore the performance of five of the current front-runner alloys for cladding and structural components in Pb/LBE fast reactors. We will also compare the results against more traditional Pb/LBE corrosion tests to make sure the new combined irradiation and corrosion facility performs as anticipated.After exposure, the Oxford partners of the project team will then analyse the samples to determine how Pb/LBE corrosion proceeds in the presence of irradiation, and how this differs from Pb/LBE corrosion without irradiation. Curiously our initial results show that irradiation slows down the rate of corrosion! To explore and understand this behaviour, we will perform characterisation of the structure and chemical composition of samples after exposure, from the macroscopic down to the atomic scale. This microstructural characterisation will be combined with mechanical testing of the exposed materials carried out by US project partners at the North Carolina State University.Overall the resultsfrom this project will finally address how simultaneous irradiation modifies the corrosion behaviour of alloys for Pb/LBE cooled fast reactors. It will allow us to identify which of the tested candidate alloys performs best and what the key mechanisms are that control its degradation during combined corrosion and irradiation. This information is vital for overcoming the current stagnation of progress in the development of Pb/LBE cooled fast reactors, and to allow directed optimisation of the structural and cladding materials they require.
Publications (none)
Final Report (none)
Added to Database 22/11/21