go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number EP/L023687/1
Title Probing surface-molecule interactions of perovskite catalysts
Status Completed
Energy Categories Hydrogen and Fuel Cells(Fuel Cells, Stationary applications) 50%;
Hydrogen and Fuel Cells(Fuel Cells, Mobile applications) 50%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields PHYSICAL SCIENCES AND MATHEMATICS (Chemistry) 50%;
PHYSICAL SCIENCES AND MATHEMATICS (Metallurgy and Materials) 50%;
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Professor N (Neil ) Alford
No email address given
Materials
Imperial College London
Award Type Standard
Funding Source EPSRC
Start Date 01 May 2014
End Date 30 June 2015
Duration 14 months
Total Grant Value £13,437
Industrial Sectors Energy
Region London
Programme NC : Physical Sciences
 
Investigators Principal Investigator Professor N (Neil ) Alford , Materials, Imperial College London (100.000%)
Web Site
Objectives
Abstract Developing renewable energy production and storage technologies represents one of the major challenges nowadays. The synthesis of efficient, highly active, and cost-effective catalysts for use in electrochemical energy conversion processes, such as the oxygen reduction process, is a critical area of research with international interest. To this end, this project aims to the understanding of the fundamental, atomic-scale mechanisms of catalytic processes as they occur in functional perovskite particles and thin films. These structures are well known for applications such as magnetic sensors and spintronics, but recently studies have also revealed promising catalytic activity that facilitates oxygen reduction (or oxygen evolution depending on the oxide material) in alkaline fuel cells (AFCs). This presents a great opportunity for commercialisation of AFC technology, since these oxides, such as LaMnO3, exhibit a significant economic advantage over noble metals, such as the commonly used Pt. The inhibiting factor that prevents their commercialisation is the development of highly active oxide catalysts. Thus, the need for synthesis of the functional oxide thin films and particles with tailored properties is growing immensely, and the demand is focused on the development and application of characterisation methods to probe the catalytic processes in real time. To address this, an interdisciplinary approach engaging chemistry, materials science, and microscopy will be undertaken. The vehicle will be environmental transmission electron microscopy (ETEM). ETEM is a specialised instrument that is capable for delivering high-resolution imaging, as in conventional transmission electron microscopy, with the extra benefit of elevated gas pressures in the sample chamber, as high as a few per cent of atmospheric pressure. In practice, the catalyst particles (and thin films) can be imaged at atomic-scale level while exposed to gas environments, such as oxygen or water, simulating real fuel cell conditions. This way, the chemical reactions at the surfaces, which ultimately determine each catalyst's activity, can be monitored in real time and with atomic scale precision
Publications (none)
Final Report (none)
Added to Database 23/06/14