Projects: Projects for InvestigatorUKERC Home![]() ![]() ![]() ![]() ![]() |
||
Reference Number | InnUK/131821/01 | |
Title | Polymer Mirco-Hollow Fibre Heat Exchangers | |
Status | Completed | |
Energy Categories | ENERGY EFFICIENCY(Transport) 20%; ENERGY EFFICIENCY(Residential and commercial) 20%; OTHER POWER and STORAGE TECHNOLOGIES(Energy storage) 20%; NOT ENERGY RELATED 40%; |
|
Research Types | Applied Research and Development 100% | |
Science and Technology Fields | PHYSICAL SCIENCES AND MATHEMATICS (Chemistry) 50%; ENGINEERING AND TECHNOLOGY (Chemical Engineering) 50%; |
|
UKERC Cross Cutting Characterisation | Not Cross-cutting 100% | |
Principal Investigator |
Project Contact No email address given Spirax Sarco UK |
|
Award Type | Collaborative Research & Development | |
Funding Source | Innovate-UK | |
Start Date | 01 April 2015 | |
End Date | 31 March 2018 | |
Duration | 36 months | |
Total Grant Value | £970,624 | |
Industrial Sectors | ||
Region | South West | |
Programme | Competition Call: 1403_CRD2_HVM_MILWL - Make it lighter, with less. Activity Make it lighter, with less | |
Investigators | Principal Investigator | Project Contact , Spirax Sarco UK (12.366%) |
Other Investigator | Project Contact , University of Nottingham (44.291%) Project Contact , Geo Green Power Limited (6.180%) Project Contact , P.A.K. Engineering Limited (8.641%) Project Contact , Environmental Process Systems Limited (8.694%) Project Contact , PAB Coventry Limited (9.237%) Project Contact , EnviroVent Limited (6.212%) Project Contact , Eco Smart Solutions UK Limited (4.379%) |
|
Web Site | ||
Objectives | ||
Abstract | his project aims to develop, optimize, and manufacture novel polymer micro-hollow fibre heat exchangers (PHFHE) for various applications . This light weight PHFHE can reduce the weight up to 50% compared with traditional metal heat exchanger, leading to at least 50% cost reduction. The small diameters of the fibres (micrometers) have thin walls and large surface area so heat transfer intensity is significantly increased. PHFHE can be applied in the following sectors: 1) Buildings: holllow membrane fibres for liquid desiccant cooling and non-porous capillaries for air heat recuperation, air heaters and fan-coils; 2) Automotive: car radiators with same thermal power as traditional radiators but 50% lighter; 3) Electronics:heat transfer units for cooling compact electronic devices; 4) Water desalination:air humidification by pervaporation through hollow fibre membranes; 5) Energy Storage: non-porous hollow fibres for encapsulating PCMs can enhance heat transfer for passive cooling and energy storage applications. The implementation of such micro-fibre technology will offer cost effective and recycleable materials significant reduction in energy consumption and carbon emission.his project aims to develop, optimize, and manufacture novel polymer micro-hollow fibre heat exchangers (PHFHE) for various applications . This light weight PHFHE can reduce the weight up to 50% compared with traditional metal heat exchanger, leading to at least 50% cost reduction. The small diameters of the fibres (micrometers) have thin walls and large surface area so heat transfer intensity is significantly increased. PHFHE can be applied in the following sectors: 1) Buildings: holllow membrane fibres for liquid desiccant cooling and non-porous capillaries for air heat recuperation, air heaters and fan-coils; 2) Automotive: car radiators with same thermal power as traditional radiators but 50% lighter; 3) Electronics:heat transfer units for cooling compact electronic devices; 4) Water desalination:air humidification by pervaporation through hollow fibre membranes; 5) Energy Storage: non-porous hollow fibres for encapsulating PCMs can enhance heat transfer for passive cooling and energy storage applications. The implementation of such micro-fibre technology will offer cost effective and recycleable materials significant reduction in energy consumption and carbon emission.his project aims to develop, optimize, and manufacture novel polymer micro-hollow fibre heat exchangers (PHFHE) for various applications . This light weight PHFHE can reduce the weight up to 50% compared with traditional metal heat exchanger, leading to at least 50% cost reduction. The small diameters of the fibres (micrometers) have thin walls and large surface area so heat transfer intensity is significantly increased. PHFHE can be applied in the following sectors: 1) Buildings: holllow membrane fibres for liquid desiccant cooling and non-porous capillaries for air heat recuperation, air heaters and fan-coils; 2) Automotive: car radiators with same thermal power as traditional radiators but 50% lighter; 3) Electronics:heat transfer units for cooling compact electronic devices; 4) Water desalination:air humidification by pervaporation through hollow fibre membranes; 5) Energy Storage: non-porous hollow fibres for encapsulating PCMs can enhance heat transfer for passive cooling and energy storage applications. The implementation of such micro-fibre technology will offer cost effective and recycleable materials significant reduction in energy consumption and carbon emission.his project aims to develop, optimize, and manufacture novel polymer micro-hollow fibre heat exchangers (PHFHE) for various applications . This light weight PHFHE can reduce the weight up to 50% compared with traditional metal heat exchanger, leading to at least 50% cost reduction. The small diameters of the fibres (micrometers) have thin walls and large surface area so heat transfer intensity is significantly increased. PHFHE can be applied in the following sectors: 1) Buildings: holllow membrane fibres for liquid desiccant cooling and non-porous capillaries for air heat recuperation, air heaters and fan-coils; 2) Automotive: car radiators with same thermal power as traditional radiators but 50% lighter; 3) Electronics:heat transfer units for cooling compact electronic devices; 4) Water desalination:air humidification by pervaporation through hollow fibre membranes; 5) Energy Storage: non-porous hollow fibres for encapsulating PCMs can enhance heat transfer for passive cooling and energy storage applications. The implementation of such micro-fibre technology will offer cost effective and recycleable materials significant reduction in energy consumption and carbon emission.his project aims to develop, optimize, and manufacture novel polymer micro-hollow fibre heat exchangers (PHFHE) for various applications . This light weight PHFHE can reduce the weight up to 50% compared with traditional metal heat exchanger, leading to at least 50% cost reduction. The small diameters of the fibres (micrometers) have thin walls and large surface area so heat transfer intensity is significantly increased. PHFHE can be applied in the following sectors: 1) Buildings: holllow membrane fibres for liquid desiccant cooling and non-porous capillaries for air heat recuperation, air heaters and fan-coils; 2) Automotive: car radiators with same thermal power as traditional radiators but 50% lighter; 3) Electronics:heat transfer units for cooling compact electronic devices; 4) Water desalination:air humidification by pervaporation through hollow fibre membranes; 5) Energy Storage: non-porous hollow fibres for encapsulating PCMs can enhance heat transfer for passive cooling and energy storage applications. The implementation of such micro-fibre technology will offer cost effective and recycleable materials significant reduction in energy consumption and carbon emission.his project aims to develop, optimize, and manufacture novel polymer micro-hollow fibre heat exchangers (PHFHE) for various applications . This light weight PHFHE can reduce the weight up to 50% compared with traditional metal heat exchanger, leading to at least 50% cost reduction. The small diameters of the fibres (micrometers) have thin walls and large surface area so heat transfer intensity is significantly increased. PHFHE can be applied in the following sectors: 1) Buildings: holllow membrane fibres for liquid desiccant cooling and non-porous capillaries for air heat recuperation, air heaters and fan-coils; 2) Automotive: car radiators with same thermal power as traditional radiators but 50% lighter; 3) Electronics:heat transfer units for cooling compact electronic devices; 4) Water desalination:air humidification by pervaporation through hollow fibre membranes; 5) Energy Storage: non-porous hollow fibres for encapsulating PCMs can enhance heat transfer for passive cooling and energy storage applications. The implementation of such micro-fibre technology will offer cost effective and recycleable materials significant reduction in energy consumption and carbon emission.his project aims to develop, optimize, and manufacture novel polymer micro-hollow fibre heat exchangers (PHFHE) for various applications . This light weight PHFHE can reduce the weight up to 50% compared with traditional metal heat exchanger, leading to at least 50% cost reduction. The small diameters of the fibres (micrometers) have thin walls and large surface area so heat transfer intensity is significantly increased. PHFHE can be applied in the following sectors: 1) Buildings: holllow membrane fibres for liquid desiccant cooling and non-porous capillaries for air heat recuperation, air heaters and fan-coils; 2) Automotive: car radiators with same thermal power as traditional radiators but 50% lighter; 3) Electronics:heat transfer units for cooling compact electronic devices; 4) Water desalination:air humidification by pervaporation through hollow fibre membranes; 5) Energy Storage: non-porous hollow fibres for encapsulating PCMs can enhance heat transfer for passive cooling and energy storage applications. The implementation of such micro-fibre technology will offer cost effective and recycleable materials significant reduction in energy consumption and carbon emission.his project aims to develop, optimize, and manufacture novel polymer micro-hollow fibre heat exchangers (PHFHE) for various applications . This light weight PHFHE can reduce the weight up to 50% compared with traditional metal heat exchanger, leading to at least 50% cost reduction. The small diameters of the fibres (micrometers) have thin walls and large surface area so heat transfer intensity is significantly increased. PHFHE can be applied in the following sectors: 1) Buildings: holllow membrane fibres for liquid desiccant cooling and non-porous capillaries for air heat recuperation, air heaters and fan-coils; 2) Automotive: car radiators with same thermal power as traditional radiators but 50% lighter; 3) Electronics:heat transfer units for cooling compact electronic devices; 4) Water desalination:air humidification by pervaporation through hollow fibre membranes; 5) Energy Storage: non-porous hollow fibres for encapsulating PCMs can enhance heat transfer for passive cooling and energy storage applications. The implementation of such micro-fibre technology will offer cost effective and recycleable materials significant reduction in energy consumption and carbon emission. | |
Publications | (none) |
|
Final Report | (none) |
|
Added to Database | 14/10/15 |