UKERC Energy Data Centre: Projects

Projects: Projects for Investigator
UKERC Home >> UKERC Energy Data Centre >> Projects >> Choose Investigator >> All Projects involving >> EP/D503051/1
 
Reference Number EP/D503051/1
Title Fouling in heat exchangers of crude distillation units
Status Completed
Energy Categories ENERGY EFFICIENCY(Industry) 50%;
FOSSIL FUELS: OIL, GAS and COAL(Oil and Gas, Refining, transport and storage of oil and gas) 50%;
Research Types Basic and strategic applied research 80%;
Applied Research and Development 20%;
Science and Technology Fields ENGINEERING AND TECHNOLOGY (Chemical Engineering) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Professor GF Hewitt
No email address given
Chemical Engineering
Imperial College London
Award Type Standard
Funding Source EPSRC
Start Date 01 June 2006
End Date 31 December 2009
Duration 43 months
Total Grant Value £1,491,902
Industrial Sectors Energy
Region London
Programme Process Environment and Sustainability
 
Investigators Principal Investigator Professor GF Hewitt , Chemical Engineering, Imperial College London (99.990%)
  Other Investigator Professor R (Rafael ) Kandiyoti , Chemical Engineering, Imperial College London (0.001%)
Professor D Dugwell , Chemical Engineering, Imperial College London (0.001%)
Dr OK Matar , Chemical Engineering, Imperial College London (0.001%)
Professor SM Richardson , Chemical Engineering, Imperial College London (0.001%)
Professor G (George ) Jackson , Chemical Engineering, Imperial College London (0.001%)
Dr EA Muller , Chemical Engineering, Imperial College London (0.001%)
Dr A (Amparo ) Galindo , Chemical Engineering, Imperial College London (0.001%)
Professor SG Kazarian , Chemical Engineering, Imperial College London (0.001%)
Professor PF Luckham , Chemical Engineering, Imperial College London (0.001%)
Professor C (Chris ) Lawrence , Institute for Energy Technology, Norway (IFE) (0.001%)
  Industrial Collaborator Project Contact , Esdu International Plc (0.000%)
Web Site
Objectives
Abstract Crude oil distillation accounts for a large fraction of the energy used in oil refining. Every effort is made to reduce this huge energy consumption by exchanging heat between the input and output streams to the distillation tower in a train of heat exchangers commonly referred to as the "crude preheat train". Unfortunately, crude oil contains components which lead to drastic fouling of the heat exchangers in the crude preheat train. Such fouling leads to enormous costs, not only in the costs of loss of energy recovery but also in the costs of loss of product and mitigation measures. In the USA alone, preheat train fouling is estimated to cost around $1.2 billion per annum. The most important components causing fouling are the asphaltenes, which are complex polynuclear aromatic compounds which carry most of the trace element content of the crude oil. Though the importance of the problem has led to a large amount of work being done, this has not led to an understandingof the processes of ashphalene transport and deposition. What is proposed is a study (carried out by a multi-disciplinary team) which covers the scales from molecular to plant systems. The first step is to understand more precisely the asphaltene contents and compositions in crude oil and deposits (Sub-Project A). Using nano-rheoemetry, the interfacial behavior of the depositing species can be studied (Sub-Project B). Using the information on chemical and physical properties of asphaltenic materials, modelling structures can be developed both of the molecular properties (Sub-ProjectD) and of the heat and mass transfer effects (Sub-Project C ). It is an essential part of the project to carry out actual measurements on fouling and the plan is to make such measurements using a small scale (rotating cell) apparatus (Sub-Project E) and an annulus flow facility simulating heat exchanger conditions (sub-Project G). Finally, technology transfer will be achieved through participation of ESDUInternational Ltd. in the project (Sub-Project H); ESDU has close contacts with the refining industry and is already developing software which is used by this industry and into which the key results of the project can be subsumed to ensure rapid take-up by the companies involved
Publications (none)
Final Report (none)
Added to Database 07/06/07