Currently applied filters
Oil & Gas combustionAuthor(s): ETI
Published: 2017
Publisher: ETI
Author(s): DTI
Published: 2005
Publisher: Department of Trade and Industry
The objectives of this project are:
Type IV cracking in the weld Heat-Affected Zone (HAZ) is likely to be the critical problem which will limit design conditions for satisfactory operation of advanced PF plant. The FOURCRACK project carried out high temperature creep testing of welds in advanced high alloy steels with a range of specifications, supplemented by specialised testing, optical and electron metallography, weld simulation and data assessment. Further work outside FOURCRACK will extend testing to longer durations.
E.ON UK led the project and undertook metallurgical investigation and assessment. Mitsui Babcock carried out weld manufacture and creep rupture testing. RWE npower investigated and characterised a special weak material. In parallel work, Loughborough University carried out electron metallography and weld simulation. Five external organisations also provided test materials and/or weldments.
This summary provides information on:Author(s): DTI
Published: 2001
Publisher: Department of Trade and Industry
The recently completed project 'Practical Improvements in Power Plant Engineering (PIPPE)' - part of the DTI Cleaner Coal Programme - has highlighted weld heat-affected zone "Type IV" cracking as a principal concern in advanced high temperature plant. Current creep test data, inevitably obtained on a much shorter timescale than the projected life of plant, suggest that weld performance could substantially deteriorate in the longer term. Better data and extrapolation techniques are needed to assess the extent of this threat to plant reliability and thus develop effective countermeasures that will gain the confidence of prospective plant purchasers and operators.
This project will help manufacturers gain a fundamental understanding of why the weld heat-affected zone is susceptible to "Type IV" cracking in high temperature service, how its susceptibility is related to steel composition and heat treatment, and, consequently, how advanced steels can best be selected and developed to minimise these risks. The main objectives are:
The FOURCRACK project will produce and assess cross-weld creep rupture test data on welds in advanced high temperature steels. The leading competitor materials will be critically compared. New welds will also be compared with simulated service aged and repair welds. Weld thermal simulation and microstructural assessment will be employed to gain a better understanding of the causes of "Type IV" cracking
This profile contains information on the project's:Author(s): Fackrell, J.E., Tabberer, R.J., Young, J.B. & Wu, Z
Published: 2005
Publisher: Department of Trade and Industry
This document is the final report for the project titled 'Gas Turbines Fired on Coal Derived Gases - Modelling of Particulate and Vapour Deposition'. This report is titled 'Alkali Salt Vapour Deposition on Gas Turbine Blades.'
The following report describes the development of a computer program for calculating deposition rates of alkali salts from two-dimensional turbulent boundary layer flows on turbine blades. The description of the program was originally submitted as the Milestone 1 Report of the project. This description is included here, but with additional sections summarising the background and theoretical approach of the work and the application of the code to an example cleaner-coal turbine.
The development and testing of the new code involved:
There is considerable potential for exploitation of the existing computer code. As it stands, the code should be of interest to those companies involved in the design and manufacture of the type of heavy-duty industrial gas turbine which will be required in the future for coal-fired operation. The main companies operating worldwide are General Electric in the United States, Alstom in the United Kingdom, Siemens in Europe, and Mitsubishi and Hitachi in Japan. The Whittle Laboratory at Cambridge University has close contact with most of these (and other) companies and it is proposed to investigate the possibilities for marketing of the code and establishing other consulting arrangements.
There is also potential for further scientific development of the thermochemical modelling. Although attention has been confined in the present project to the salts of sodium and potassium and their behaviour in high temperature gas flows, the method of analysis is fairly general and could be extended to encompass other situations. For example, two problems of current interest which might respond to similar modelling techniques are the transport of corrosive vanadium salts to gas turbine blades in conventional gas turbines and corrosion of steam turbine blades by sodium salts present in the feedwater. In the United Kingdom, companies such as Rolls-Royce, Alstom and Siemens will be approached for discussion on the possibility of extending the modelling to deal with these and other technical problems.
This report is divided into the following sections:The remainder of the report consists of a user manual for VAPOURDEP written by J.B. Young, and Appendices:
Author(s): Davison, J.
Published: 2017
Publisher: ETI
Author(s): DTI
Published: 2003
Publisher: Department of Trade and Industry
The objectives for this project are:
Advanced power generation systems, based on gasification, are being developed. Hot gas cleaning technologies for gasification systems offer the potential of a lower cost approach to pollutant control and gas turbine protection, leading to simpler cycle configurations with associated efficiency advantages. The unreliability of the ceramic filter elements used in demonstration trials and the high capital cost of these systems have hindered their application and are factors restricting the uptake of gasification power plants in general. The successful development of a durable metallic filter system for the ABGC would be a major step towards its implementation.
Metallic filter media provide a number of significant advantages over ceramics. In order to realise fully the cost and environmental advantages, it is essential that the systems provide not only efficient contaminant removal but also have the reliability and availability required of the overall system. It is now apparent that reliable, lower cost filter systems can be operated using metallic filter media, provided improved materials selection and advanced fabrication methods are developed.
This project has successfully investigated the performance of a range of candidate materials for the manufacture of filters for use in gasifier (IGCC and ABGC) hot gas paths.
This summary provides information on:Author(s): Kilgallon, P., Simms, N.J., Oakey, J.E. & Boxall, I.
Published: 2004
Publisher: Department of Trade and Industry
This document is the final report for the project titled 'Metallic Filters for Hot Gas Cleaning'.
Hot gas filtration has not only been adopted as an essential system component in hybrid technologies like the Air Blown Gasification Cycle, but is also being used to remove particulate prior to water scrubbing of fuel gases in first generation Integrated Gasification Combined Cycle (IGCC) plants. The unreliability of the ceramic filter elements in demonstration trials and the high capital cost of these particle removal systems have hindered their application and are factors restricting the uptake of gasification power plants in general. The successful development of a durable metallic filter system for the Air Blown Gasification Cycle (ABGC) would be a major step towards its implementation. Metallic filter elements have potential applications in all IGCC systems and in other industries requiring hot gas cleaning.
This project aimed to identify the optimum materials for the various component parts of metallic filter elements, evaluate candidate fabrication routes and determine likely service lives in gasifier hot gas path environments typical of IGCC and ABGC.
A screening test (Activity A) was carried out to aid the selection of candidate materials for exposure in the main materials test programme (Activity B). The materials chosen for inclusion in the second phase tests were: Haynes D205 EN2691, Fecralloy, Haynes HR160, IN690, Haynes 188, AISI 310, IN C276, Hastelloy X, IN Alloy 800HT, AISI 316L and Iron Aluminide. Activity B tests were carried out in two environments, simulating high sulphur content IGCC fuel gas and low sulphur content ABGC fuel gas. The materials were evaluated at temperatures of 450, 500 and 550°C for the high sulphur gas and at 550°C for the low sulphur gas, for periods up to 3000 hours.
Using the results of Activity B, existing corrosion life prediction models for gasification environments developed at Cranfield University, have been modified and used to predict the expected service lives under operational IGCC/ABGC filter conditions (Activity C). The design requirements for a prototype element for IGCC/ABGC applications have been identified and related to the data produced in this project (Activity D).
When compared to the ABGC gas environment, the IGCC gas environment has been shown to cause significantly greater damage. The damaging effect of deposit coatings has also been demonstrated. The materials tested in Activity B have been ranked in order of degree of oxidation and Haynes D205 EN 2691, Fecralloy and HR 160 have shown the best performance.
The project has provided the basis for new opportunities for the development of metallic filter media in gasification environments. To confirm this potential the manufacture of full sized elements is required together with their demonstration in pilot scale trials and in commercial installations. In addition to coal, biomass gasification can benefit from the improved reliability and filtration performance offered by metallic filters and it is recommended that further work is undertaken to evaluate materials suitable for operating in such environments.
This report is divided into the following sections:Author(s): DTI
Published: 2001
Publisher: Department of Trade and Industry
Fuel gas derived from coal can contain various impurities such as dust and alkali salts, which can deposit on the blades of gas turbines used in cleaner coal systems and lead to increased turbine degradation. It is important to be able to estimate these deposition rates in order to assess different systems.
This project is aimed at:
Many cleaner coal technologies, including the various IGCC and ABGC systems derive their inherently high efficiency by coupling a gasification process with a gas turbine combined cycle unit. The coal is converted into a fuel gas that is then used to fire the combined cycle unit. Gas turbines are designed to operate on clean gaseous fuels such as natural gas, whereas the fuel gas derived from coal will contain various impurities such as dust (ash) and also alkali salts. These can cause deposit build-up, erosion and/or corrosion of the gas turbine blades, leading in turn to increased operating costs, both in terms of replacement blades and the associated down times, and reduced efficiency. Conventional IGCC's can clean the fuel gas to very pure levels using low temperature processes. The ABGC, and second generation IGCC's will use hot gas clean up where the degree of alkali removal and dust capture may not be as efficient. This will improve the efficiency of the plant and lower capital costs, but may have deleterious effects on the gas turbine.
To predict the degree of deposition, erosion and corrosion in the gas turbine, it is first necessary to be able to model (i) the behaviour of small particles within the turbine passages, including their impact on the blades and (ii) the deposition rate of alkali salts on the turbine blades. Current models for deposition are difficult to apply and not always physically accurate. Improved models are needed to provide better estimates of the degradation and determine the degree of cleanliness required in coal-derived fuel gases fed to gas turbines.
A computer program will be developed to calculate the behaviour and deposition of small particles in the three dimensional flow fields typical of gas turbines. This program will incorporate the models for both inertial and turbulent effects, which current models can only consider separately
This profile contains information on the project's:Author(s): DTI
Published: 2002
Publisher: Department of Trade and Industry
The objectives of this project were:
The project was set up as a potential first step towards a VPDM. It would review the current capability of power plant modelling; it would also look at the future needs and applications, consider how well current models can meet these needs and in particular what further developments are needed. Finally, it would consider the proposed VPDM initiative and consider whether it is the best framework for providing these further developments and if so, what is the best strategy that will enable the UK to produce this VPDM.
The conclusion from the review of existing capabilities is that the UK currently has a strong simulation capability in power generation. Difficulties begin to arise when the range of plant considered in a given study increases, when an equipment change is proposed within an existing study, where operators wish to simulate off-design performance within their own plant or where whole system studies such as economic analyses and cycle optimisation are required.
It is clear from this project that a major collaborative initiative similar to that proposed for a VPDM, is required for the fossil power plant industry. This project has identified the development needs that the collaborative project must meet and it has also detailed a particular integrated software framework that should achieve these needs. Most of the leading organisations in the UK involved in power plant modelling development or use, have indicated that they would like to participate in preparing such a collaborative project.
This summary provides information on:Author(s): DTI
Published: 2004
Publisher: Department of Trade and Industry
The objectives of this project are:
UK power generation and associated industries are facing growing pressures from ever-tightening environmental constraints, the drive for sustainability and increasing global competition. This provides new challenges and applications for power plant modelling in: new plant development; design and manufacture; plant demonstration and authorisation; engineering support. The recently completed project on Power Plant Modelling (see Project Summary 336), which was supported by the DTI, proposes a new UK power plant modelling initiative: the development of a VPDM.
A future VPDM will provide an integrated software framework which will allow the full potential for whole-plant software modelling to be realised. As a result, UK industry could provide competitive power plant solutions and ultimately zero emission technologies with significantly reduced development costs, risk and very competitive prices. The development of the full VPDM will be split into two phases, each lasting three years.
This summary provides information on:Author(s): Eyre, N.
Published: 2023
Publisher: CREDS
Author(s): DTI
Published: 2002
Publisher: Department of Trade and Industry
Foresight's Advanced Power Generation Task Force has recommended that an initiative should be undertaken to produce a Virtual Plant Demonstration Model. The 'Stepping Stones to Sustainability' report of the Foresight's Energy and Natural Environment Panel recommends a priority area for R and D on 'low and close-to-zero emission power generation'; a realistic VPDM will be a key tool in ensuring the UK can successfully develop fossil fuelled commercial plant that delivers this.
The VPDM should reduce the need for full-scale demonstrations of advanced power station technologies, which for large plant typically cost £100's million and should also reduce commissioning times for new plant. It will also help in the development of new technologies and assist in avoiding 'dead-end' developments. Finally, it will be of benefit to existing plant by being able to model new technology upgrades, which could be a major business in some markets where existing coal plant could become marginalised.
Specific objectives are:
The UK has a track record of power plant development and operation that is second to none. However the UK has at times fallen down on getting these developments into the market place; the ABGC and some IGCC designs are examples of this. In the case of GTs, new developments have been pushed through into the market place but often they have been accompanied by major commissioning, operation and maintenance problems that have threatened their economic viability. A way round these problems is to have major demonstration programmes but these are extremely costly for large plant and difficult to fund.
This profile contains information on the project's:Show more results