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In this deliverable Bournemouth Uni presents an original approach for mining utility data usage patterns relying on a 

novel Deep Hierarchical Dynamic model which consists of three modules, a Deep Belief network (DBN), a hierarchical 

mixture model which is based on Latent Dirichlet Allocation (LDA) and a Dynamic Bayesian Network based on Hidden 

Markov Model (HMM), called DBN-LDA-HMM. This architecture aims at extracting topics from data while taking into 

account the temporal structure of the data to model the inter-topic sequential dependency. While the mathematical 

details of the proposed algorithm are described elsewhere, a full empirical evaluation of this pattern mining algorithm 

using the ETI data is discussed, highlighting its performance on various mining tasks.

Context:
The High Frequency Appliance Disaggregation Analysis (HFADA) project builds upon work undertaken in the Smart 

Systems and Heat (SSH) programme delivered by the Energy Systems Catapult for the ETI, to refine intelligence and 

gain detailed smart home energy data. The project analysed in depth data from five homes that trialed the SSH 

programme’s Home Energy Management System (HEMS) to identify which appliances are present within a building 

and when they are in operation. The main goal of the HFADA project was to detect human behaviour patterns in order 

to forecast the home energy needs of people in the future. In particular the project delivered a detailed set of data 

mining algorithms to help identify patterns of building occupancy and energy use within domestic homes from water, 

gas and electricity data.

Disclaimer: The Energy Technologies Institute is making this document available to use under the Energy Technologies Institute Open Licence for 

Materials. Please refer to the Energy Technologies Institute website for the terms and conditions of this licence. The Information is licensed ‘as is’ 

and the Energy Technologies Institute excludes all representations, warranties, obligations and liabilities in relation to the Information to the 

maximum extent permitted by law. The Energy Technologies Institute is not liable for any errors or omissions in the Information and shall not be 

liable for any loss, injury or damage of any kind caused by its use. This exclusion of liability includes, but is not limited to, any direct, indirect, 

special, incidental, consequential, punitive, or exemplary damages in each case such as loss of revenue, data, anticipated profits, and lost 

business. The Energy Technologies Institute does not guarantee the continued supply of the Information. Notwithstanding any statement to the 

contrary contained on the face of this document, the Energy Technologies Institute confirms that it has the right to publish this document.
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5 Paper Deep Online Hierarchical Unsupervised Learning 

for Pattern Mining from Utility Usage Data 
6 Paper Deep Online Hierarchical Dynamic Unsupervised 

Learning for Pattern Mining from Utility Usage 
Data 

3. Glossary of Terms 

Ref Description 
 

ETI Energy Technologies Institute 
HEMS Home Energy Management System (also referred to as HEMS V1) 
HFAD High Frequency Appliance Detection 
LDA Latent Dirichlet Allocation  
GLDA Gaussian Latent Dirichlet Allocation 
DBN Deep Belief network 
HMM Hidden Markov Model 

DBN-LDA-HMM 
Deep Belief Network-Latent Dirichlet Allocation – Hidden Markov Model 
(Deep Hierarchical-Dynamic model) 

NILM Non-intrusive load monitoring 
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4. Executive Summary 

This deliverable describes the third task which is related to dynamic modelling. Specifically, it 

presents an original approach for mining utility data usage patterns relying on a novel Deep 

Hierarchical Dynamic model which consists of three modules, a Deep Belief network (DBN), 

a hierarchical mixture model which is based on Latent Dirichlet Allocation (LDA) and a 

Dynamic Bayesian Network based on Hidden Markov Model (HMM), called DBN-LDA-HMM. 

This architecture aims at extracting topics from data while taking into account the temporal 

structure of the data to model the inter-topic sequential dependency. While the mathematical 

details of the proposed algorithm are described elsewhere1, a full empirical evaluation of this 

pattern mining algorithm using the ETI data is discussed, highlighting its performance on 

various mining tasks. 

5. Introduction 

In this report, we propose a fully unsupervised novel non-intrusive load monitoring (NILM) 

solution that combines a dynamic Bayesian hierarchical mixture model and a deep belief 

network (DBN). The processing flow in this s architecture consists of two stages. First, DBN 

learns, in unsupervised fashion, low-level generic features from the raw signals of the house 

utilities usage. Then, the hierarchical Bayesian model (Latent Dirichlet Allocation) learns high-

level features that capture correlations among the low-level ones; whereas the temporal 

ordering of the high-level features is captured by the Dynamic Bayesian Model (Hidden 

Markov Model). Thus, in contrast to Deliverable 2, the proposed solution harnesses the ability 

of DBN to learn distributed hierarchies of features in order to construct sophisticated 

appliances-specific features without the need to rely on precise human-crafted input 

representations. On the other hand, the clustering capability of the hierarchical Bayesian 

models (LDA) helps summarise the input data by extracting higher-level information that 

represents the residents' consumption patterns (appliance patterns). In the meantime, the 

dynamic Bayesian network correlates these patterns over time. Hence, the proposed 

architecture models the temporal ordering in the data extending the approach of online 

Gaussian latent Dirichlet allocation (GLDA) developed in Deliverable 2. 

Using this DBN-LDA-HMM architecture, we aim at overcoming the computational complexity 

that would occur if temporal modelling was directly applied to the raw data or even to the 

manually engineered and constructed features. The computational efficiency is crucial as our 

application involves massive data from different utilities usage. Moreover, we develop a novel 

online inference algorithm to cope with this big data. Finally, we propose different evaluation 

methods to analyse the results showing that DBN-LDA-HMM finds useful patterns and 

improves on the results of Deliverable 2. 

6. Dynamic Modelling 

In the following we introduce the DBN-LDA-HMM approach after providing some background 

related to human activity recognition and NILM techniques. 

                                                           

1 This work was submitted to IEEE transactions on pattern analysis and machine intelligence.  
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6.1 Context and Motivations 

This work is a continuation of the work in Deliverable 2 [1] where online Gaussian Latent 

Dirichlet Allocation (GLDA) is proposed to extract global components that summarise the 

energy signal. These components provide a representation of the consumption patterns. The 

algorithm is applied on the same data-set as in this report. However, in contrast to [1] temporal 

dependency is considered here. We also employ deep learning to construct features rather 

than engineering them using signal processing technique. 

 Recently, the field of deep learning (DL) has made a huge impact and achieved remarkable 

results in computer vision, natural language processing, and speech recognition. Yet it has 

not been exploited in the field of NILM. DL provides an effective tool for extracting multiple 

layers of distributed features representations from high-dimensional data. Each layer of the 

deep architecture performs a non-linear transformation of the outputs stemming from the 

previous layer. Thus, through DL, the data is represented in the form of a hierarchy of features, 

from low-level to high-level [2, 3] Instead of relying on heuristic hand-crafted features, DL 

learns to extract features that allow for more discriminative power. Supported by the sheer 

size of the available data and its high sampling rate (205 KHZ) which results in a very high-

dimensional data, we are the first to use unsupervised DL model in NILM. In contrast to 

existing electrical engineering and signal processing approaches adopted in NILM, ours relies 

fully on the data to construct informative features. 

 In this deliverable, we pre-train a DBN [4] to learn generic features from unlabelled raw 

electrical signal with 1 second granularity. The extracted features are fed to the LDA-like part 

of the model with 30 minutes granularity to build clusters which correspond to appliance 

usages. Ideally, each cluster refers to an appliance, but that’s a very demanding task since, 

we rely only on the utility data. Moreover, although, the bag-of-words assumption adopted 

here is a major simplification, it breaks down unnecessary low-level hard-to-model complexity 

leading to computationally efficient inference with no much loss as shown in GLDA [1] and [5]. 

The second aim of this study to capture the temporal dynamics hidden in the data in order to 

understand the relationship between the clusters/topics/components (implicitly representing 

appliances usage). By doing so, sequences of appliance usages are captured, which could 

hopefully and ideally correspond, in turn, to the daily human activity. This modelling is obtained 

through the application of a dynamic Bayesian network (HMM layer) in the proposed model. 

6.2 The DBN-LDA-HMM Model  

The proposed layered three-module architecture is motivated by the ultimate goal of capturing 

an abstraction of human activities. As explained earlier, each module in this architecture has 

a well-defined purpose: deep network to extract high-level granular features, LDA to generate 

topics (patterns corresponding to appliance usage), and HMM to model the temporal 

dependencies between the topics.  

Such multi-module design has been inspired from existing work [6,7], though not in the same 

context as ours.  In particular, authors in [6] plugged a hierarchical Dirichlet process (HDP) 

prior on top of a Deep Boltzmann Machine (DBM) network which allows learning multiple 

layers of abstractions. The low-level abstraction represents generic domain-specific features 

that are hierarchically clustered and shared to yield high-level abstraction representing 

patterns. However, this work does not consider the temporal ordering of the high-level 
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representations (patterns). On the other hand, the study in [7] proposed an LDA-HMM hybrid 

model to perform action recognition. The model was motivated by the success and the 

efficiency of the bag-of-features approach, adopted by topic modelling, in solving general high-

level problems. The temporal ordering power of HMM is harnessed to correlate the activity at 

high-level. The paper uses collapsed Gibbs sampler for approximate inference and learning.  

In our work, we use an unsupervised version of LDA-HMM [7] which is more similar to the 

approach taken in [8]. But on the contrary, instead of using Gibbs sampling, we propose a 

stochastic variational inference (SVI) [9] algorithm that allows to do large-scale inference in 

order to cope with the massive amount of energy consumption data (around 8 TB).  

Moreover, we employ DBN to construct appliance-specific features which are used as input to 

the hierarchical Bayesian mixture model to construct topic-specific features. The mixture of 

these components forms the residents' energy consumption patterns. The dynamic part of the 

three-module architecture (HMM) exploits the temporal regularity in the human behaviour 

leading to better performance and allowing forecasting energy demand.  

In this work, we demonstrate that this approach can capture significant statistical structure in 

a specified window of data over a period of time. This structure provides understanding of 

regular patterns in the human behaviour that can be harnessed to provide various services 

including energy efficiency. For example, understanding of the usage and energy consumption 

patterns of residents to help them acquire insight into their usage of utilities and provide them 

with recommendation concerning their lifestyle to improve their consumption behaviour [10]. 

Also, but not high relevance to this work, energy consumption patterns could be used to predict 

the power demand (load forecasting), to apply management policies, and to avoid overloading 

the energy network.  

As already mentioned, the DBN-LDA-HMM algorithm is going to be trained on a very huge 

amount of data resulting from the high sampling rate around 205 kHz of the electricity signal 

which gives us an advantage compared to the data used in other research studies except for 

[11]–[13]. Besides the advantage the data availability, its diversity (energy, water and gas 

usage data) and high rate go beyond what similar studies use [14,15]. Moreover, 

measurements provided by additional sensors are also exploited to refine the performance of 

the pattern recognition algorithm. More details on the data can be found in [1] and [16].   

The mathematical formulation of the proposed DBN-LDA-HMM algorithm can be found in [16]. 

7 Experiments  

In this section, we will first introduce the experimental setting of DBN-LDA-HMM. Then, data 

pre-processing is described followed by results and discussion.  

7.1 Experimental Settings 

Initially, the utility usage data is pre-processed in 3 steps: 1) synchronisation of same utility 

data, 2) alignment of data coming from different utilities. and 3) feature extraction. Details 

about the pre-processing steps and data description are given in [5] and Deliverable 1. In this 

section, we focus on the experiments performed on the pre-processed data, where the online 

LDA-HMM is applied on the features extracted by DBN. DBN-LDA-HMM comes with a number 

of parameters, we refer the reader to [16] (Section 4) for an exhaustive coverage of the 
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experimental setting of such parameters which concern: the granularity of the processing 

windows of the signals, the feature windows after DBN, the number components/clusters, the 

learning rate, the number of iterations and the hyper-parameters of the three modules.  

7.2 Global Components  

The learned components by DBN-LDA-HMM correspond to clusters of data produced by DBN 

(output space of DBN). They represent patterns of energy consumption that underlie the 

human activities. Such clusters are represented by multinomial distribution over the discrete 

features obtained by means of DBN. A pattern in this context is considered as a mixture of the 

clusters (each cluster contribute proportionally to the emergence of a pattern). For the sake of 

visualisation, we plot gray-scale images of these components where black colour indicates 

zeros-probability and white colour indicates one-probability. Figure 1 shows the 

aforementioned clusters where x-axis corresponds to different clusters and y-axis represents 

the discrete DBN's outputs (input in the new feature space generated by DBN).  

 It can be seen from Fig.1 that only around 350 dimensions of DBN's output represent the 

appliance related components that summarise the data. Hence, different combination in these 

350 dimensions form the clusters whose mixtures represents patterns. In analogy to topics 

model, these are the words composing the topics forming the documents. This observation 

shows that DBN has managed to reduce the high-dimensional input space (raw signal) to 

discrete lower dimensional output space (See Appendix in [5]) where countably small number 

of points represents most of the input signal over 1 second granularity. Hence, we expect  

 

Figure 1: Clusters in DBN’s output space 
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Figure 2: Patterns of energy consumption activities 

these points to have strong relation with appliances usage. This is supported by the few light-

coloured points appearing with each component which indicate that different clusters 

(appliance-related components) are mainly composed of these points. 

To highlight the emergence of patters, Figure 2 shows the relationship between clusters (y-

axis) and their proportion. The sparse light-coloured rectangles in Fig. 2 indicate that the 

majority of patterns consist mainly of few appliance-related components. For example, the 

main components for breakfast patterns will relate to cooking and heating appliances such as 

the hob and the oven. Figure 2 also shows few horizontal strips of light colour located at 

component index 2, 10, 15 and 20. This can be explained by the fact that these components 

appear in most patterns meaning that they may belong to appliances which are used in 

different activities (e.g. lighting - lamps).  

In the following, we propose two evaluation methods to support our claims about the relation 

between clusters and appliances, patterns and activities. 

7.3 Evaluation and Analysis  

In order to investigate the quality of the results, we study the regularity of the mined patterns 

by matching them across similar periods of time. For instance, it is expected that similar 

patterns will emerge in specific time slots like breakfast in every morning, watching TV in the 

evening, etc. This regularity can also be seen across days, for instance, consumption 

behaviour during working days is different from that during the weekend.  Hence, it is 

interesting to understand how such patterns emerge as regular events. We also provide a 
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quantitative evaluation of the algorithm by proposing a mapping method that reveals the 

specific energy consumed from the inferred patterns within the patterns' granularity (fixed to 

30 minutes).  By doing so, we can evaluate numerically the consistency between energy 

consumption and the extracted patterns. This is achieved by fitting a regression model to the 

energy consumption over the K components (clusters in DBN's output space). This technique 

will also allow numerically checking the predicted consumption against the real consumption. 

7.4 Pattern Regularity 

Using the optimal parameters' setting as explained in [16], in the following we examine the 

regularity of the mined patterns. To do that, we use the first two weeks of the data (from 11-

05-2017 10:10:10 to 25-05-2017 10:10:10) for analysis. To study the regularity of the energy 

consumption behaviour of the residents, we compare the mined patterns across different days 

of the testing period. The similarity of the patterns across the two weeks are computed (details 

can be found in [16]). 

Table 1 shows the per-day dissimilarity. It can be clearly seen from the table that there are 

regular patterns across the same days from two different weeks. That is, similar energy 

consumption patterns appear across these days. This dissimilarity is a bit higher for the 

weekend during which more irregular activities could take place. Computing the dissimilarity 

measure between week and weekend days confirms this observation. For instance, the 

dissimilarity between first week's Monday and second week's Sunday is equal to 0.0091 which 

is much higher than that between Mondays of the two weeks. In contrast, the dissimilarity 

among working days is generally low. 

Table 1: Patterns dissimilarity matrix 

          Week 1 
Week 2 Mon Tue Wed Thu Fri Sat Sun 

Mon 0.0052 0.0058 0.0068 0.0061 0.0066 0.0090 0.0093 

Tue 0.0048 0.0049 0.0057 0.0058 0.0069 0.0080 0.0095 

Wed 0.0064 0.0055 0.0049 0.0048 0.0071 0.0083 0.0089 

Thu 0.0069 0.0060 0.0059 0.0058 0.0074 0.0085 0.0090 

Fri 0.0070 0.0064 0.0069 0.0073 0.0068 0.0080 0.0097 

Sat 0.0089 0.0086 0.0081 0.0086 0.0079 0.0082 0.0080 

Sun 0.0091 0.0087 0.0091 0.0093 0.0096 0.0080 0.0088 

 

This regularity may be caused by regular user lifestyle leading to similar energy consumption 

behaviour within and across the weeks. Such regularity is violated in the weekend time, as 

more irregular activities could take place. Having shown that there is some regularity in the 

mined patterns, it is more likely that specific energy consumption can be associated with each 

component.  

For the sake of completeness, in the next section, we apply a regression method to map the 

patterns within the patterns' granularity (fixed to 30 minutes) to energy consumption. Thus, the 

parameters of interest are the energy consumption associated with the components. By 

attaching energy consumption with each component, we can help validate the coherence of 

the extracted patterns and evaluate numerically the consistency between energy consumption 

and the extracted patterns which can be exploited to predict the load demand. 
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7.5 Energy Mapping  

As shown in the previous section, DBN-LDA-HMM can express the energy consumption 

patterns by mixing multinomial distributions over mixture of components (clusters) that 

summarise the data. Each component is a distribution over a high-dimensional feature space 

and understanding what it represents is not easy. Hence, we propose to associate 

consumption quantities to each component. Such association is motivated by the fact that an 

energy consumption pattern is normally governed by the usage of different appliances in the 

house. There should be a strong relation between components and appliances usage. Hence, 

a relation between components and energy consumption is plausible. Note that the best-case 

scenario occurs if each component is associated with the usage of a specific appliance (cluster 

≈ appliance usage). Apart from the coherence study, associating energy consumption with 

each component can be used to predict the energy consumption demand.  

As explained in [16], we apply a simple least-square regression method to map the inferred 

patterns within the patterns' granularity (fixed to 30 minutes) to energy consumption. We train 

the regression model on the week from 18-05-2017 23:45:22 to 25-05-2017 23:45:22 and run 

the model on the following week from 25-05-2017 23:45:22 to 01-06-2017 23:45:22. Figure 3 

and 4 show the energy consumption (in joules) along with the estimated consumption 

computed using the learned per-component consumption parameters.    

The similarity between the estimated and computed energy consumption demonstrates that 

the inferred components express distinct usages of energy. Such distinction can be the result 

of the usage of different appliances likely having distinct energy consumption signatures. 

Thus, the proposed approach produces coherent and regular patterns that reflect the energy 

consumption behaviour and implicitly human activities. Note that it is possible that different 

patterns (or appliance usages) may have the same energy consumption and that might be 

one reason why both estimated and computed energy consumption is not fully the same.  

  

Figure 3: Computed energy consumption 
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 Figure 4: Estimated energy consumption 

8.  Conclusion 

In this report, we presented a novel approach to extract patterns of the users' consumption 

behaviour from data involving different utilities (e.g., electricity, water and gas) as well as some 

sensors measurements. DBN-LDA-HMM is fully unsupervised and the LDA-HMM component' 

training is done online which made it efficient for big data. To analyse the performance, we 

proposed a two-step evaluation that covers: patterns regularity and coherency. The 

experiments show that the proposed method is capable of extracting regular and coherent 

patterns that highlight energy consumption over time. 
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