

DTI TECHNOLOGY PROGRAMME

Renewable energy

CORLEX

Cost Reduction and Life Extension of Offshore Wind Farms

Project Leader: D M Shuter, Corus RD&T

The CORLEX Project

Title: Cost Reduction and Life Extension of Offshore

Wind Farms

Partners: Corus (coordinator)

TWI

Atkins Process

CamCal

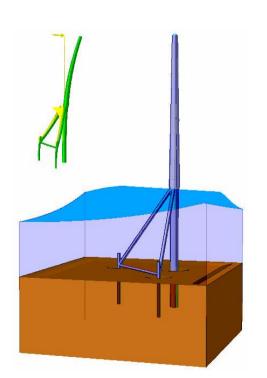
npower renewables

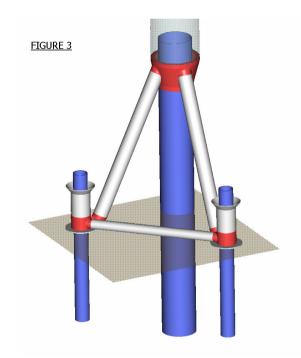
Sheffield Forgemasters

Total Cost: £800k

Duration: 24 months (May 2005 – April 2007)

Funding: 40% of project costs will be paid by DTI


CORLEX Project – Programme

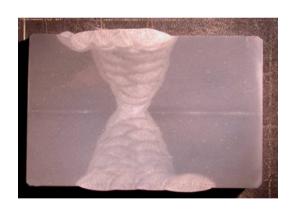

No.	Title	Responsible
1	Review Existing Tower and Foundation Designs	Atkins
2	Welding Technologies	Corus
3	Structural Health Monitoring	Corus
4	Risk Based Life Management (Start Q3)	TWI
5	Casting Technology and Design Optimisation (Start Q3)	Sheffield Forgemasters
6	Guidelines for Redesign (Start Q4)	Atkins, Corus, TWI, Sheffield Forgemasters
7	Project Management	Corus

WP1: Review Existing Tower and Foundation Designs - Atkins

1) To review existing tower and foundation designs and agree on which of these CORLEX will focus.

 To provide a base-line of data (engineering and economic) against which developments in CORLEX can be compared.

WP1: Review Existing Tower and Foundation Designs



- Review existing tower and foundation designs.
- Produce Basis of Design for selected structure
- Consider wave and wind loading regimes. Determine stresses, strains, fatigue lives in agreed design(s)
- Perform weld / castings fatigue hotspot analyses
- Study the potential failure modes in chosen design(s)
- Determine the steel properties that are required
- Determine the limitations (e.g. design, construction) of the chosen designs
- Identify costs associated with chosen design(s) and provide a cost breakdown

WP2: Welding Technolgies - Corus

- 1) Assess Welding technologies:
 - Reduced Pressure Electron Beam Welding (RPEBW);
 - Non Vacuum Electron Beam Welding (NVEBW);
 - Multi-wire SAW; and
 - SAW (benchmark)

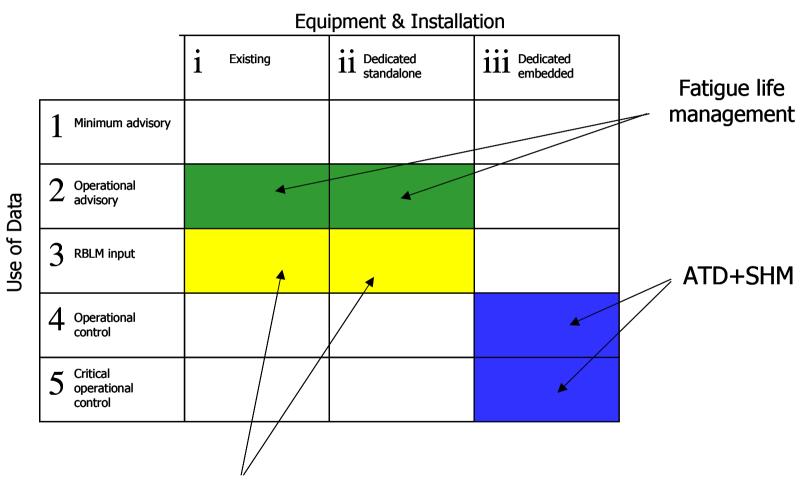
2) Assessment of mechanical performance (fracture, fatigue) & potential economic performance (i.e. productivity, capital investment, running costs).

3) Identify the most promising welding technologies for different material thickness and whether the technologies may be economically viable.

WP2: Welding Technologies

4) Material

- An Offshore steel grade currently in use S355 EMZ
- A "trial" offshore EN10225 S355G10 grade equivalent to BS7191 355EM.
- Possible future trends for offshore steel grades including S450EMZ and a TMCR high Nb, high strength steel grade will also be investigated.



WP3: SHM - Corus

- 1) To assess the ability of structural health monitoring (SHM) to reduce costs of offshore wind farms
- To produce a conceptual design and cost estimate for a structural health monitoring system
- 3) Workplan:
 - Review of sensor technologies
 - Review of condition monitoring in the wind energy industry
 - Review of relevant codes and standards
 - Case study of SHM systems in an offshore windfarm
 - Conceptual "system" design

CORLEX SHM Specification Framework

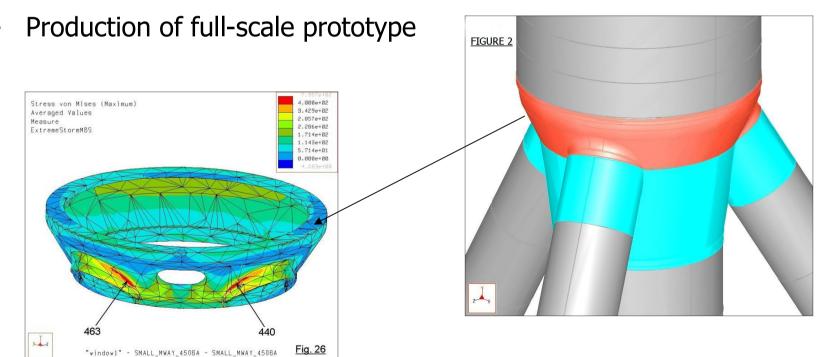
Risk-based maintenance & inspection

WP4: RBLM - TWI

 To develop a risk-based life-management (RBLM) methodology to reduce operating costs (maintenance & inspection) of offshore wind farms

2) produce a prototype RBLM analytical software tool for use in the offshore wind sector

WP5: Casting Technology and Design Optimisation - SFEL



- To assess the capability of cast components (including novel design concepts) to replace welded joints in offshore wind structures
- To produce a production scale casting and establish a new, quick and cheaper manufacturing method
- To establish the feasibility of using permanent mould pieces and check achievable surface finish
- To establish costs and optional manufacturing methods
- To optimise casting designs with respect to weight and stress

WP5: Casting Technology and Design Optimisation - Workplan

- Shortlist of regions with potential to be optimised
- Optimise design of most critical regions

WP 6: Guidelines for Redesign

1) Benefits from:

New Welding Technologies SHM RBLM Tool Use of Castings Technology

- 2) New Designs Concepts
- 3) Cost Benefit Analysis
- 4) Final Report

DTI TECHNOLOGY PROGRAMME

Renewable energy

CORLEX

Cost Reduction and Life Extension of Offshore Wind Farms

Project Leader: D M Shuter, Corus RD&T