

This document was prepared for the ETI by third parties under contract to the ETI. The ETI is making these documents and data available to the public to inform the debate on low carbon energy innovation and deployment.

Programme Area: Marine

Project: PerAWAT

Title: Tidal Array Scale Numerical Modelling Interactions within a Farm (Steady Flow)

Abstract:

This report describes the formulation of and results obtained from an actuator disk model of a tidal turbine. The presented work falls into the first category of farm scaled models, namely blade modelled/turbine resolved three dimensional Reynolds averaged Navier-Stokes (RANS) simulations. Output from these models will be used for the development of shallow water equation models of turbines which are to be incorporated into basin scale models in WG2 WP3. The advantages of using a model of this type in a RANS simulation is that the time to solution is much faster than for blade-resolved models allowing small arrays of turbines to be modelled.

Context:

The Performance Assessment of Wave and Tidal Array Systems (PerAWaT) project, launched in October 2009 with £8m of ETI investment. The project delivered validated, commercial software tools capable of significantly reducing the levels of uncertainty associated with predicting the energy yield of major wave and tidal stream energy arrays. It also produced information that will help reduce commercial risk of future large scale wave and tidal array developments.

Disclaimer:

The Energy Technologies Institute is making this document available to use under the Energy Technologies Institute Open Licence for Materials. Please refer to the Energy Technologies Institute website for the terms and conditions of this licence. The Information is licensed 'as is' and the Energy Technologies Institute excludes all representations, warranties, obligations and liabilities in relation to the Information to the maximum extent permitted by law. The Energy Technologies Institute is not liable for any errors or omissions in the Information and shall not be liable for any loss, injury or damage of any kind caused by its use. This exclusion of liability includes, but is not limited to, any direct, indirect, special, incidental, consequential, punitive, or exemplary damages in each case such as loss of revenue, data, anticipated profits, and lost business. The Energy Technologies Institute does not guarantee the continued supply of the Information. Notwithstanding any statement to the contrary contained on the face of this document, the Energy Technologies Institute confirms that the authors of the document have consented to its publication by the Energy Technologies Institute.

PerAWaT (MA 1003) Report WG3 WP2 D5a Tidal array scale numerical modelling. Interactions within a farm (Steady Flow).

Participant lead on the deliverable: DM Ingram Other participant: DA Olivieri

> Institute for Energy Systems School of Engineering The University of Edinburgh King's Buildings, Edinburgh EH9 3JL

Not to be disclosed other than in line with the terms of the Technology Contract

August 2012

Executive summary	3
Chapter 1. Actuator disk models 1. Implementation	7 11
Chapter 2. Depth averaged analysis 1. Shallow water equations	13 13
 Chapter 3. Results 1. Single turbine flume test 2. Array of turbines in series 3. Staggered array of turbines 	19 19 36 60
Appendix A. Production of Depth averaged data using VisIt	83
Appendix B. Contents of the Accompanying CD	89
Appendix C. usinv.f90	91
Appendix D. ustsns.f90	107
Appendix. Bibliography	121

Executive summary

FIGURE 1. Interaction of the various scales of turbine model within the WG3 of the PerAWAT project

This report describes the formulation of and results obtained from an actuator disk model of a tidal turbine. The presented work falls into the first category of farm scaled models, namely *blade modelled/turbine resolved* three dimensional Reynolds averaged Navier-Stokes (RANS) simulations. Output from these models will be used for the development of shallow water equation models of turbines which are to be incorporated into basin scale models in WG2 WP3. The advantages of using a model of this type in a RANS simulation is that the time-to solution is much faster than for blade-resolved models allowing small arrays of turbines to be modelled.

EXECUTIVE SUMMARY

In addition to describing the formulation of the model it has been applied to the simulation of three test cases. The first case is for a single three bladed horizontal axis tidal turbine in a flume. This test case is based on the experiments performed in the EDF flume in Chattou which have previously been modelled by the University of Oxford. Comparisons to the predicted thrust and power coefficient distributions as functions of tip-speed ratio are made with these results and with the results from the EDF experiments. The coefficients used for the actuator disk model are drawn from information derived from blade resolved simulations performed in Edinburgh (in WP5) and from lift/drag data from Garad-Hassan's Tidal-Bladed programme.

The second and third cases model experiments performed on arrays of turbines by Manchester University. In these simulations the centre rows of a very wide array are modelled and the two cases considered represent rotors in series (i.e. directly downstream of each other) and in a staggered grid. Comparisons of predicted thrust and power coefficient distributions as functions of tip-speed ratio are made against data from the Manchester tests.

Finally, following diskussions at sub-project technical meetings, a depth averaging analysis has been performed on the results obtained from the simulations. By presenting the velocity and turbulence information in this way models of turbine for shallow water simulations can be checked and calibrated, providing for the first time, detailed information for this purpose. The depth averaging analysis of the three dimensional RANS results is only possible because of recent advances in flow visualisation tools which allow statistical information, including mean values, to be derived from fully three dimensional data.

The work presented in D5a concentrates on steady-state cases where the mean upstream turbulent flow onto the turbine (or array) is of constant and uniform velocity. The subsequent deliverable D5b will examine unsteady flow. It is important to note that the blade element momentum (BEM) model used to model the rotor makes an assumption of steady flow onto the rotor disk. In the unsteady simulations this assumption will be violated, but such a violation is acceptable provided that the time scales inherent in the unsteady flow are slower than that associated with the blade passing frequency of the turbine.

Deliverable D5a comprises:

- (1) input files for chosen configurations (on the accompanying CD)
- (2) report on the implementation of the parametric model and the simulation of the selected farm layouts, and an assessment of the models ability to characterise the farm, under steady turbulent flow conditions (this report).
- (3) report on the structure of the parametric description of the wake of an array of horizontal axis turbines (to be provided to WG3 WP3 D3 and WG3 WP6 D5) for steady turbulent flow (see the depth averaged analysis presented in chapter 3).

The acceptance criteria for this report are:

4

(1) Code_Saturne input and output files for the selected configurations.

These are on the accompanying CD, the file structure on the CD is described in Appendix B and also in the README file on the CD's top level directory.

- (2) Report describes the following (for steady turbulent flow conditions)
 - (a) Describe chosen farm configurations

The chosen farm configurations are diskussed in the results chapter in §3.1 for the single turbine case, §3.2 for two rows of turbines in series, and §3.3 for two rows of turbines in a staggered arrangement.

(b) assumptions and algorithms behind the model; guidance on interpretation of results including assessment of farm performance; interpretation and diskussion of results; diskussion of applications and limitations.

The actuator disk model is described in detail in chapter 1, this chapter also includes details of the implementation of the model within Code_saturne and details of the models limitations

(3) The basic structure of the parametric description of the wake of an array of horizontal axis will be defined (i.e. number and identification of key parameters, and the relationships between them).

The approach taken to parameterise the wake for use in shallow water models is described in chapter 2. A detailed tabular presentation of the depth averaged results, together with summary psudo-colour mosaic plots, are presented in §3.1 for the single turbine case, §3.2 for two rows of turbines in series, and §3.3 for two rows of turbines in a staggered arrangement.

CHAPTER 1

Actuator disk models

Actuator disk models make it possible to simulate the effects of a rotor within a three dimensional Reynols averaged Navier-Stokes simulation without the need to resolve the individual blades of the rotor. As such the actuator disk models are much more computationally efficient than blade resolved models, requiring an order of magnitude less mesh points. The actuator disk region is a part of the computational domain where the presence of the rotor is accounted for by adding momentum to (in the case of a fan) or removing momentum from (in the case of a turbine) the fluid explicitly using a source term. Actuator disk models can be used when we have information about how the rotor behaves on its own and we want to know how it affects its surroundings. These models have been widely applied to wind turbines (e.g. Mikkelsen [2003]). They are based on an extension of the Froude momentum theory and can be applied to a range of problems where a sudden discontinuities in flow properties occurs [Horlock, 1978].

The actuator disk model approximates the forces the turbine device applies to the flow, by spreading the rotor blade forces over the swept disk volume with the same diameter as that of the rotor in question. The solution to the flow problem is captured in a Reynolds Averaged Navier-Stokes (RANS) equation as a contributing source term S_i . The RANS equations are time-averaged equations of motion for fluid flow, which used together with approximations based on knowledge of the properties of flow turbulence, give approximate time-averaged solutions to the NavierStokes equations. For a stationary, incompressible Newtonian fluid, these equations can be written in Einstein notation as:

(1)
$$\rho \overline{u_j} \frac{\partial \overline{u_i}}{\partial x_j} = \rho \overline{f_i} + \frac{\partial}{\partial x_j} \left[-\overline{p} \delta_{ij} + \mu \left(\frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right) - \overline{\rho u_i' u_j'} \right] + \overline{S_i},$$

where $\overline{u_i}$ and $\overline{u_j}$ are the time averaged velocity components in the x_i and x_j coordinate directions, \overline{p} is the time averaged pressure, ρ is the constant fluid density, δ_{ij} is the Kronecker delta function, $\overline{S_i}$ is the time averaged value of the source term due to the forces experienced on a fluid element within the actuator disk (see figure 1) and $\overline{\rho u'_i u'_j}$ is the time average of the fluctuating (turbulent) momentum. This last term cannot be determined analytically and must be modelled using an empirical turbulence model.

FIGURE 1. Details of the actuator disk model involving (a) a view of a Blade Element at r from the rotating blades and its equivalent effect (b) seen as a RANS source term S_i at r and θ .

The source term S_i is derived from considering the forces experienced on a fluid element within the actuator disk, see figure 1. The source term is defined as:

(2)
$$S_i = -\frac{dF_i}{V_{cell}},$$

where V_{cell} is the volume of the particular finite volume in the disc region, at a radial position r and an azimuthal coordinate θ .

1. ACTUATOR DISK MODELS

The force dF_i is derived using blade element momentum theory [Hansen, 2001]. Here the theory is applied to compute the forces on the fluid element arising from an N bladed tidal turbine, rotating at a speed Ω . The rotor plane is split into a number of finite annuli of width δr , located at a radius, r, with the effects of the N blades smeared out of the 2π radians of the rotor plane (Figure 1). Writing the blade element forces $dF_{L,Dcell} = \{-dF_{\theta} \sin \theta, dF_{\theta} \cos \theta, dF_z\}$ in blade fixed coordinates at r, (Figure1(b)) leads to

(3)
$$dF_{L,Dcell} = \frac{N\delta A f_{L,D}}{(2\pi r)},$$

where δA is the frontal area of the disc element and $f_{L,D}$ is instantaneous sectional rotor forces due to local lift dL and drag dD of each blade of the N rotating blades of the rotor. The sectional rotor force $f_{L,D}$ is derived from the two dimensional α vs C_L/C_D tables for the particular airfoil blade section design involved in the blade design at radial position r. If we considered the fact that $f_{L,D} = f(dF_{\theta}, dF_z)$, then for dF_{θ} and dF_z we get

(4)
$$dF_{\theta} = 0.5\rho c W_{rel}^2 F(C_L \sin \phi - C_D \cos \phi)$$

(5)
$$dF_z = 0.5\rho c W_{rel}^2 F(C_L \cos \phi + C_D \sin \phi)$$

where W_{rel} , c, ρ and F are the blade element relative flow velocity, local blade chord, density ρ and Prandtl tip loss factor[Prandtl and Betz, 1927]. This expressed mathematically as

(6)
$$F = \frac{2}{\pi} \arccos\left[\exp(-\frac{N(R-r)}{2r\sin\phi})\right]$$

where R is the tip radius of the rotor. The blade element flow velocity W_{rel} is the flow velocity experienced by each sweeping blade in the plane of the disc and can be accounted for by the simple flow analysis shown in figure 1(a), involving u_z , Ωr and u_{θ} . Where u_{θ} is the circumferential velocity at r and θ which is simply

(7)
$$u_{\theta} = -u_x \sin \theta + u_y \cos \theta$$

As the model proceeds the values of u_z and u_θ , provided by the solution of the Navier Stokes equation(1), will change for a given free stream velocity U_0 and rotor rotational speed Ω until the flow field has converged to steady state condition. The angle of attack, α , of the blade elements will also change during flow calculation, since $\alpha = \phi - \psi$. This is found using the given blade element blade twist angle, ψ , and the calculated local blade element flow angle ϕ (Figure1(a)). This dependency also means that the forces on

1. ACTUATOR DISK MODELS

the rotor change as the solution converges, since both the coefficients of lift and drag, $(C_L \text{ and } C_D)$ also depend on the local angle of attack, α .

In setting up the Code_Saturne simulations for all the cases presented in this report employed, the usinv.f90, ustsns.f90 user subroutines must be modified to incorporate the actuator disk model. The Code_Saturne user manual [EDF, 2012] details of the procedure for implementing both explicit and implicit source terms for the u_x , u_y and u_z momentum equations. The implicit and explicit components of the source term are linearised by using a first-order Taylor expansion. Considering (1):

(8)
$$\rho \frac{\partial u_i}{\partial t} + \ldots = \ldots + f(u_i).$$

The source $f(u_i)$ can be expressed as non-linear source term of the form $f(u_i) = -K_i u_i^2$. Note K_i is effectively a force resistance coefficient equivalent to

(9)
$$K_i \equiv \frac{(dF_{L,Dcell})_i}{V_{cell}W_{rel}^2}.$$

With reference to (3) for the terms employed in (9). As a result the source term $f(u_i)$ must decompose into an implicit $crvimp_i$ part and an explicit $crvexp_i$ part in accordance with Code_Saturne finite volume solver [EDF, 2012] such that

(10)
$$crvimp_i = V_{cell} \frac{df}{du_i} \left(u_i^{(n)} \right), \text{ and}$$

(11)
$$crvexp_i = V_{cell} \left[f\left(u_i^{(n)}\right) - \frac{df}{du_i} \left(u_i^{(n)}\right) u_i^{(n)} \right].$$

Applying each of these decompositions to the three, u_x , u_y and u_z , momentum equations we obtain:

(12)
$$crvimp_x = 2K_x(\Omega r + u_\theta)\sin\theta crvexp_x = -K_x\left(W_{rel}^2 + 2(\Omega r + u_\theta)u_x\sin\theta\right)$$

(13)
$$crvimp_y = -2K_y(\Omega r + u_\theta)\cos\theta crvexp_y = -K_y(W_{rel}^2 - 2(\Omega r + u_\theta)u_y\cos\theta)$$

and

(14)
$$\begin{array}{rcl} crvimp_z &=& -2K_x u_z \\ crvexp_z &=& K_x \left(u_z^2 - (\Omega r + u_\theta)^2\right) \end{array}$$

Furthermore, it is necessary that the computation grid used resolves the rotor plane with sufficient fidelity that the actuator disk model influences the overall flow field. The best results are obtained when nacelle of the turbine (and possibly the supporting structure)

1. IMPLEMENTATION

are gridded as solid volumes within the computational grid. Chapter 3 discusses the computational setup for both the single and multi-array turbine models.

1. Implementation

This model is implemented in the ustsns.f90 and usinv.f90 user routines to enable the solver to effectively model the flow around the actuator disk. Full listings of the Fortran-90 code for both of the user routines (for the two turbines in series case) are presented in appendices C and D. The usinv.f90 subroutines are called when the solver first starts up and are used to initialise the actuator disk model. usinv.f90 reads blade.txt, a data file which describes the blade section of the rotor.

The following data is taken from the **blade.txt** file for the case with two turbines in series.

0.001 38.3667 0.015 1.0 Circle Circle 0.015 38.3667 0.015 1.0 Circle Circle 0.0325 22.8758 0.02 0.04 Goe804 Goe804 0.045 16.0 0.03 0.04 Goe804 Goe804 0.059 11.3441 0.0275 0.04 Goe804 Goe804 0.0725 8.96169 0.025 0.04 Goe804 Goe804 0.085 7.4854 0.022326 0.04 Goe804 Goe804 0.099 5.77244 0.019486 0.04 Goe804 Goe804 0.1125 4.12977 0.0175 0.04 Goe804 Goe804 0.125 3.08001 0.015454 0.04 Goe804 Goe804 0.135 2.57973 0.013 0.04 Goe804 Goe804 -1 -1 -1 -1 -1 -1

Each line of the file describes a particular slice through the rotor: The first column of the data file contains the radial ordinate of the section (in meters), the second contains the twist angle (in degrees), the third the chord length (in meters), the fourth the relative thickness and the final two columns contain the

file names of the tables containing the lift and drag data. The last row of the input file is indicated by the entry of -1 in each column.

When information is needed for a radial station not found in the file, the information needed to compute the forces on the actuator disk element are found by interpolating between the two nearest radial stations.

The lift/drag data files follow a similar format, for example the Circle.txt contains:

-90 0.0 3.00E-01 2 0.0 3.00E-01 4 0.0 3.00E-01 6 0.0 3.00E-01 8 0.0 3.00E-01 10 0.0 3.00E-01 12 0.0 3.00E-01 14 0.0 3.00E-01 16 0.0 3.00E-01 18 0.0 3.00E-01 180 0.0 3.00E-01 -999 -999 -999

In this file each line contains an angle of attack (in degrees) followed by the lift and drag coefficients. The file is terminated by the entry of -999 in each column. As with the **blade.txt** data, if an angle of attack is needed which is not explicitly given in the file the required lift and drag values are interpolated from the nearest entries in the table.

12

CHAPTER 2

Depth averaged analysis

1. Shallow water equations

Shallow water flow codes, like those in the TELEMAC suite [Moulinec et al., 2011], are based on a depth-averaged model of the fluid equations. This approach is taken to reduce the computational costs associated with flow simulations over large geographic areas, as even with modern high performance computers it is inconceivable that basin scale three dimensional Reynolds averaged Navier-Stokes models could be applied to engineering applications.

The depth-averaged two-dimensional flow equations (the so-called shallow water equations) are obtained, as the name suggests, by averaging the Reynolds equations over the depth. The following conditions have to be met in order for the shallow water equations to be applicable:

• vertical momentum exchange is negligible and the vertical velocity component w is a lot smaller than the horizontal components u and v, i.e.

$$w \ll u$$
 and $w \ll v$.

• the pressure gain is linear with the depth (i.e. there is a hydrostatic pressure distribution), i.e.

 $p\approx\rho\,g\,z.$

For simplicity of exposition we will consider the one-dimensional form of the shallow water equations (some times called the St. Vennant equations):

(15)
$$\frac{\partial}{\partial t} \begin{pmatrix} \phi \\ \phi u \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \phi u \\ \phi u^2 + \frac{1}{2}\phi^2 \end{pmatrix} = \begin{pmatrix} 0 \\ g(S_0 - S_f) - T \end{pmatrix}$$

where $\phi = gh$ is the geopotential, u is the velocity, S_0 is the slope of the channel, S_f is the Chezy friction term, and T is the momentum sink associated with the presence of a turbine. The equations can be simplified even further by writing them in their homogeneous form;

(16)
$$\frac{\partial}{\partial t} \begin{pmatrix} \phi \\ \phi u \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \phi u \\ \phi \overline{u}^2 + \frac{1}{2} \phi^2 \end{pmatrix} = 0.$$

The first equation conserves energy, measured in terms of the local head of water, ρgh and the second equation conserved momentum, ρghu . Since these equations have been obtained by averaging the Navier-Stokes equations over the water column, the velocity, u, should properly be written as

$$\overline{u} = \frac{1}{h} \int_{-h}^{0} u(z) \,\mathrm{d}z,$$

where h is the, local, water depth. Giving,

(17)
$$\frac{\partial}{\partial t} \begin{pmatrix} \phi \\ \phi \overline{u} \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \phi \overline{u} \\ \phi u^2 + \frac{1}{2} \phi^2 \end{pmatrix} = 0.$$

Although it is unlikely that these conditions hold in the neighbourhood of a tidal turbine it has been found that the shallow water equations can give acceptable solutions for other problems which violate the assumptions (for example wave overtopping of breakwaters, see Richardson et al. [2002, 2003]) and they can also provide useful engineering design information. Furthermore the time-to-solution for models based on the shallow water equation is several orders of magnitude faster than three-dimensional Navier-Stokes simulations with free surfaces [Ingram et al., 2005].

Shallow water models for tidal current interactions can prove highly effective for domains in which the lateral dimensions greatly exceed the vertical [Bryden et al., 2007] where they represent solutions of a simplified form of the Navier-Stokes equations. In many locations, there is unlikely to be sufficient boundary condition information to justify a full 3D analysis, even if such an approach were practical computationally. Modellers generally have to be content with a combination of outputs from acoustic depth profilers and, in the best described environments, with surface radar measurements. Regrettably, depth profilers do not give comprehensive area information and are limited in the accuracy of their output as a result of spatial uncertainty, while radar gives no indication of conditions below the surface. Neither profilers nor surface radar, even in combination, will give a comprehensive boundary description.

Shallow water models can be extended using a multi-layer interpretation, when there is a need to consider issues associated with depth velocity profiles in the absence of significant upwelling. In such cases, it becomes inappropriate to simply represent the energy extraction process through an artificial increase in the bed friction over a defined area of the sea bed. However, the actuator disk approach remains applicable.

In the following section a method for depth averaging three dimensional, Reynolds averaged, Navier-Stokes simulation results is described. This approach was diskussed in a technical meeting of WG3 at Chattou in Paris and it was agreed that the results would be post-processed to produced depth averaged output which could be used for the development of boundary conditions and actuator disk models for shallow water solvers. Data presented in this way can also be used for direct validation of shallow water simulations.

1.1. Depth averaging. In designing source terms to model tidal turbines in shallow water flows, based on either three-dimensional Navier-Stokes simulations or on experimental data, it is thus necessary to examine the depth averaged quantities such as: the velocity components \overline{u} , \overline{v} ; the depth averaged total pressure (which can be equated

FIGURE 1. Volume weighted averaging inclusion condition for two computation cells (j = 1 and j = 2). Cell j = 1 is not included in the volume weighted average for bin k computed using equation (18), while cell j = 2is.

to total head), \overline{P} ; and, depth averaged measures of turbulence, \overline{k} . Fortunately modern scientific visualisation and analysis tools now include routines for performing statistical analysis on three dimensional data from simulations and experiments.

In the present analysis the methodology described by Joy et al. [2007] has been applied, using the VisIt flow analysis tool [Childs et al., 2005]. In this approach the stream-wise and cross-flow directions are divided into a number of discrete bins over the domain of interest (Figure 3). The flow variable under consideration is then averaged for all computational cells contained within the bin using a volume weighted average, i.e.

(18)
$$\overline{q_k} = \frac{1}{\sum_j v_j} \sum_j v_j q_j \ \forall j \text{ st } \Omega_j \in \Omega_k$$

where Ω_j is the j^{th} control volume and Ω_k is the diskrete bin. Figure 1 illustrates the selection criteria for including computation cells in the volume weighted average for a given bin.

Figures 2 and 3 show the three dimensional velocity magnitude field and the binned depth averaged data from one of the simulations of the single turbine tested in the EDF flume. In this case results are presented for a tip-speed ratio of 4.0, a more detailed depth averaged analysis is presented later. Figure 3 is a mosaic plot where each of the discrete bins is coloured using a psudo-colour to represent the exact value of the depth averaged velocity magnitude. In each of the mosaic plots presented in this report the bin colour is found by linear interpolation of the hue from 240° (blue) to 0° (red) using

2. DEPTH AVERAGED ANALYSIS

TABLE 1. Depth averaged velocity magnitude data for the single turbine tested in the EDF fume at a TSR of 4.0, using 9 stream wise bins and 21 cross flow bins. The value for the cell containing the turbine has been underlined and only the right hand half of the flow domain is show.

	stream wise direction \rightarrow										
0.2420	0.2441	0.2432	0.2422	0.2415	0.2415	0.2415	0.2415	0.2415			
0.2579	0.2584	0.2576	0.2579	0.2575	0.2574	0.2574	0.2574	0.2574			
0.2596	0.2599	0.2587	0.2586	0.2581	0.2581	0.2580	0.2580	0.2580			
0.2613	0.2617	0.2603	0.2601	0.2596	0.2596	0.2596	0.2595	0.2595			
0.2682	0.2714	0.2689	0.2674	0.2670	0.2669	0.2669	0.2669	0.2669			
0.2641	0.2674	0.2633	0.2630	0.2627	0.2627	0.2626	0.2626	0.2626			
0.2679	0.2707	0.2685	0.2677	0.2678	0.2678	0.2678	0.2678	0.2678			
0.2659	0.2657	0.2666	0.2657	0.2660	0.2661	0.2661	0.2661	0.2661			
0.2700	0.2704	0.2717	0.2705	0.2712	0.2714	0.2714	0.2714	0.2714			
0.2659	0.2671	0.2660	0.2669	0.2691	0.2692	0.2692	0.2692	0.2692			

the HSV colour model [Foley and Van Dam, 1982]. The hue of the cell is

$$H_{cell} = u_{cell} \frac{240}{u_{min} - u_{max}},$$

while the saturation and value of the cell are both set to 1. Plots of this kind are widely used for the representation of discrete data and are closely related to the psudocolour plots used to present the three dimensional results in this report and to the voxel techniques used in medical imaging [Foley and Van Dam, 1982; Halse et al., 1991; Ihaka and Gentleman, 1996; Larkin, 1992]. They are implemented in statistical packages such as R [Crawley, 2007] and in CFD visualisation tools such as VisIt [Childs et al., 2005].

The bins need to be sufficiently large to contain a number of cells, but since the grids associated with basin scale shallow water simulations will be much coarser than those used in the high-resolution three dimensional simulations this is not an issue. If the bins are too small then larger computational grid cells will not be contained entirely within them, and therefore not included in the volume weighted average, leading to missing values. In cases where the flow field is expected to by symmetric in the crossflow direction (for example with single turbines and turbines in series) it is important that there is an odd number of bins in that direction.

Binned data can be plotted (Fig 3) or exported in tabular form (Table 1). Once the depth averaged fields have been computed depth-averaged velocity distributions down stream of the array can be extracted and plotted if required. For coarser grain shallow water models the depth averaged quantities in the table can be aggregated to estimate source terms and provided validation data.

Appendix A contains instructions for the production of depth averaged data using the VisIt program.

FIGURE 2. Velocity magnitude mosaic plot showing a section through the model single turbine tested in the EDF flume

FIGURE 3. Velocity magnitude mosaic plot showing depth averaged analysis for the single turbine tested in the EDF, uses 9 stream wise bins and 21 cross flow bins. The centre of the turbine face is located at (0.0, 0.0)

CHAPTER 3

Results

With all of the cases presented in this report, there are two steps in setting up an actuator disk simulation. Firstly a computational grid must be generated which sufficiently resolves the regions of the flow domain containing the actuator disk(s), and, secondly the user modules usinv.f90, and ustsns.f90 must be modified to specify the source terms associated with each disk (see appendices C and D). In all cases the mesh was generated using ANSYS's ICEMCFD meshing software with unstructured hexahedral grids. Each of the actuator disk regions is gridded as a thin cylindrical area of mesh and in all cases the nacelle of the turbine is exactly represented as a solid void within the computational domain. In each case a multi-block approach was used to generate the grid with an appropriate blocking strategy being selected. This strategy differed only slightly for the single and multiple turbine models, in that in the areas where the turbines exist the meshing density was increased to adequately resolve each turbine. One other important difference between the single and multiple turbine cases is that in the single case the nacelle support was modelled, whereas in the multi-turbine models only the nacelles are represented. The generated grids were exported in .cgns format for import into Code_Saturne.

1. Single turbine flume test

To demonstrate the actuator-disk model described in chapter 1 comparisons have been made with test conducted on a model scale turbine installed in the EDF flume in Chattou. In these computations the nacelle and its support have been modelled explicitly as solid boundaries within the grid while the rotor has been modelled as an actuator disk. Simulations have been performed at tip speed ratios of $\gamma = 4.0$ and $\gamma = 4.5$ based on the undisturbed free stream flow.

1.1. Computational set-up. Figure 1 shows the meshing strategy employed in ICEM in the neighbourhood of the turbine. A cylindrical O-grid which extends throughout the entire computational domain has been used to discretise the rotor plane, this O-grid has 15 cells in the radial direction and 60 cells in the circumferential direction. Mesh stretching has been used to refine the grid at the edge of the rotor so the shear between the free stream flow and the fluid which has passed through the actuator disk is sufficiently resolved. Both the nacelle and its support have been used at the centre of the O-grid, though this does not form part of the actuator disk. The computational domain extends from 30 diameters downstream of the turbine to 10 diameters upstream.

3. RESULTS

FIGURE 1. Detail from the ICEM mesh generator showing the crosssectional grid (blue), the solid volumes for the nacelle and it's support (yellow) and the refined mesh region in the neighbourhood of the actuator disk.

The rotor has a diameter of 0.6m and the centre of the turbine rotor plane is defined as the origin for the computation. The flume is 1.5m wide and 0.8m deep with the rotor located on the centre line at midwater.

It is important to note that the support pylon has been modelled using its correct physical dimensions and this leads to an over prediction of C_P in $k - \omega$ turbulence models. The support pylon was included in this case to allow comparison both with the experimental studies performed by EDF in the Chattou file and with simulations performed by the University of Oxford – the issue of tower scaling was raised by the Oxford at the technical meeting in July, but a decision not to re-grid and re-compute was taken as the source of the variation could be explained.

The mesh shown in figure 1 gives details of the nacelle and tower environment as light brown mesh surface cells covering these parts, while the actuator disk cells illuminated in figure 3 indicate how thin the disk region is in relation to the solid nacelle and tower areas. The recommendation by iHarrison et al. [2010] is to keep the actuator disc thickness to 0.01 times its diameter. Figure 3 shows how thin the actuator disk (identified by the red bounding box) is in relation to the rest of the computational domain.

Radial	Twist	Chord	Thickness	Section
ordinate	angle	length	type	
0.040	32.0	0.0203	100%	Circle
0.060	31.0	0.0204	15%	4415
0.065	30.1	0.0261	15%	4415
0.070	29.2	0.0318	15%	4415
0.075	28.3	0.0375	15%	4415
0.080	27.5	0.0433	15%	4415
0.084	26.6	0.0490	15%	4415
0.089	25.8	0.0548	15%	4415
0.094	25.0	0.0605	15%	4415
0.099	24.2	0.0663	15%	4415
0.104	23.4	0.0721	15%	4415
0.109	22.6	0.0779	15%	4415
0.114	21.8	0.0837	15%	4415
0.119	21.1	0.0895	15%	4415
0.124	20.4	0.0953	15%	4415
0.129	19.7	0.0939	15%	4415
0.133	19.0	0.0921	15%	4415
0.138	18.3	0.0904	15%	4415
0.143	17.6	0.0886	15%	4415
0.148	17.0	0.0868	15%	4415
0.153	16.4	0.0851	15%	4415
0.158	15.8	0.0833	15%	4415
0.163	15.2	0.0816	15%	4415
0.168	14.6	0.0798	15%	4415
0.173	14.0	0.0781	15%	4415
0.178	13.5	0.0763	15%	4415
0.182	13.0	0.0746	15%	4415
0.187	12.4	0.0728	15%	4415
0.192	12.0	0.0711	15%	4415
0.197	11.5	0.0693	15%	4415
0.202	11.0	0.0676	15%	4415
0.207	10.6	0.0658	15%	4415
0.212	10.1	0.0641	15%	4415
0.217	9.7	0.0623	15%	4415
0.222	9.3	0.0606	15%	4415
0.227	8.9	0.0589	15%	4415
0.231	8.6	0.0571	15%	4415
0.236	8.2	0.0554	15%	4415
0.241	7.9	0.0537	15%	4415
0.246	7.6	0.0519	15%	4415
0.251	7.2	0.0502	15%	4415
0.256	7.0	0.0484	15%	4415
0.261	6.7	0.0467	15%	4415
0.266	6.4	0.0450	15%	4415
0.271	6.2	0.0433	15%	4415
0.276	6.0	0.0415	15%	4415
0.280	5.8	0.0398	15%	4415
0.285	5.6	0.0381	15%	4415
0.290	5.4	0.0363	15%	4415
0.295	5.2	0.0346	15%	4415

TABLE 1. Blade geometry for the three bladed horizontal axis tidal turbine tested in the EDF flume.

3. RESULTS

FIGURE 2. Coefficients of aerodynamic lift, C_L , and drag, C_D , for a NACA 4415 airfoil.

The blade geometry used in these tests is shown in Table 1. The required tables of for coefficients of lift, C_L , and drag C_D , against angle of attack, α , for the NACA4415 airfoil were obtained from the University of Oxford are can be found in the file 4415.txt, the lift and drag coefficients for the airfoil are plotted in Figure 2. usinv.f90 and ustsns.f90 were modified to create a single actuator disk located on the face of the rotor. The source code for the user routines, together with the files blade.txt, circle.txt and 4415.txt are included on the accompanying CD in the Single directory.

For both tip-speed ratios, the left, lower and right walls of the computational domain were specified as walls (and the zero tangential flow condition imposed), while the top of the computational domain was set as a symmetry condition (zero normal flow) to mimic a free surface with minimal deformation. The upstream boundary condition (located 11 diameters upstream of the rotor face) has a uniform velocity with 9.5% turbulence intensity. The Code_Saturne computations were run using the transient solver with a reference time step of 0.006 seconds, an adaptive time step was used with a maximum Courant number of 1:0. Convergence was accelerated by using local time-stepping and the solution was run for 3000 iterations. Full details of the setup are to be found in the Code_Saturne setup file, D5_CASE.xml which is to be found on the accompanying CD, also in the Single directory.

Figure 3 shows the velocity magnitude on the surface of the nacelle, the front face of the actuator disk and the downstream walls of the domain and also on a section through the centre plane of the domain, while figure 4 shows the velocity magnitude distribution on the vertical slice through the centreline of the flume.

1. SINGLE TURBINE FLUME TEST

FIGURE 3. Velocity magnitude for flow passed a single horizontal axis tidal turbine in the centre of a flume. The top plot shows the mesh on the surface of the domain coloured by velocity together with psudo-colour plots of the velocity on the nacelle and the rotor plane (incited in red). The lower plot shows the velocity distribution through the horizontal mid water plane.

3. RESULTS

FIGURE 4. Velocity magnitude for flow passed a single horizontal axis tidal turbine in the centre of a flume. Both plots show psudo-colour plots of the velocity magnitude on the vertical centre plane of the flume, with the top plot showing an enlargement of the turbine nacelle and the near wake region.

1.2. Comparison with experimental data. The single tidal turbine test case conducted at EDF's test facility in Chatou, Paris under work package WG4 WP1 D4, was also simulated by the University of Oxford and has been chosen as a validation case for the actuator disk model. From the results seen in figure 5 the actuator disk model involved with Code_Saturne compares well for the uniform flow situation, even though slight discrepancies occurred, these were due to the short comings of the $k-\omega$ SST model in predicting drag on bluff bodies. The use of $k - \omega$ SST, leads to an over prediction of C_P and C_T particularly at higher tip-speed ratios. The University of Oxford reported in the sub-project technical meeting in Chattou (July 2012) that this can be corrected

FIGURE 5. Comparison of computed thrust, C_T , and power, C_P , coefficients from the present actuator disk model and computations performed by the University of Oxford using the commercial CFD code Fluent.

by reducing the diameter of the supporting pylon. Since this change would require remeshing the computational domain, which would be very time consuming, this has not be done at the present time. The authors also note that the implantation of the $k - \omega$ SST turbulence model for rough surfaces in **Code_Saturne** is know to be defective [Nguyen, 2011]¹. As a result, in the computations for staggered and sequential arrays of horizontal axis tidal turbines presented in the following sections of this chapter, the $k - \epsilon$ turbulence model has been employed.

Figures 6 and 7 compare results from the present simulations (using a rigid lid, RANS simulations with a smooth flume floor and the $k - \omega$ turbulence model), the experiments

 $[\]label{eq:linear} \ensuremath{^{1}\text{http://code-saturne.org/forum/viewtopic.php?f=9\&t=842\&p=4703\&hilit=rough+wall\#p4703}$

3. RESULTS

FIGURE 6. Velocity distribution on the centreline of the flume containing a single horizontal axis tidal turbine. Showing the present model at a tip speed ratio of $\gamma = 4.5$ (green line), experimental measurements from EDF (circles), and results from the University of Oxford's CFD models for a rigid lid calculation (RL) and free surface calculations using the Volume of Fluid (VOF) model.

FIGURE 7. Velocity distribution across the width of a flume containing a single horizontal axis tidal turbine. Showing the present model at a tip speed ratio of $\gamma = 4.5$, experimental measurements from EDF, and results from the University of Oxford's RANS Blade Element Momentum (BEM) calculations.

conducted in the Chattou flume by EDF and simulations performed by the University of Oxford using both a rigid lid and free surface. In both the Oxford simulations and the EDF experiments the walls and floor of the flume are rough surfaces leading to the development of a thicker boundary layer and reducing the mean velocity and leading to the more parabolic upstream velocity profile than is observed in the smooth walled calculations using the present method (see the z = -2.8 profiles in figure 7). The higher mean velocity is also leads to an over prediction of the centreline velocity (Figure 6), though the error between the computational measurements and the experiments is comparable with the under prediction error in the Oxford simulations. In the cross stream profiles downstream of the turbine (Figure 7) similar the wake behind the rotor and the nacelle are clearly observed as the accelerated flow passing the turbine.

Although there are discrepancies between the present results and those from EDF and Oxford they are explained by the presence of smooth walls in the simulation. It was necessary to use smooth walls in these calculations as the rough wall model in Code_Saturne is know not to work with the $k - \omega$ turbulence model. This comparison demonstrates, however, that the actuator disk model is reproducing the wake of the turbine correctly. The comparisons also highlight the importance rough walls in the simulation and as a consequence the array simulations performed in the following section will utilise the $k - \epsilon$ turbulence model, which does work with rough walls in Code_Saturne.

1.3. Depth averaged results. The three dimensional Navier-Stokes results (Fig 2) have been discretised using 10 bins in the stream wise direction, covering z = -1.0m to z = 3.0m and 21 bins in the cross flow direction covering the full width of the computational region. The rotor is located at z = 0.0m. Increasing the number of bins in the stream wise direction leads to the occurrence of missing values in the discretised data as the computational grid is stretched down stream from the turbine. Where tabular data is presented the flow direction is indicated and the mean values for the bins containing the turbine are underlined.

The depth averaged results for both tip-speed ratios ($\gamma = 4.0$ and $\gamma = 4.5$) show a velocity drop at the centre of the turbine and strong generation of turbulence, in both cases this is particularly strong for the bin immediately behind the rotor, which contains the support pylon. In the results for the higher tip-speed ratio the collapse of the near wake region and the acceleration of the flow bypassing the rotor as it is constrained by the flume walls can clearly be identified.

1.3.1. Tip speed ratio $\gamma = 4.0$. Figure 8 shows mosaic plots of the binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity. The bin containing the turbine hub is at (0,0,0.0) and it is easily identifiable in the velocity plot showing the expected velocity deficit associated with the flow passing the turbine face. Tables 2 to 4 present the binned mean values with the bin containing the turbine nacelle underlined.

FIGURE 8. Single turbine in the EDF flume at a tip speed ratio of $\gamma = 4.0$: Mosaic plots showing binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity.

TABLE 2. Single turbine in the EDF flume at a tip speed ratio of $\gamma = 4.0$: Depth averaged velocity magnitude. The value for the cell containing the turbine has been underlined

stream	wise	direction	\rightarrow
Suteam	wise	unection	\rightarrow

			5010	am wise	uncenor	1 /			
0.2415	0.2423	0.2441	0.2435	0.2425	0.2415	0.2415	0.2415	0.2415	0.2415
0.2573	0.2582	0.2591	0.2570	0.2582	0.2575	0.2574	0.2574	0.2574	0.2574
0.2580	0.2589	0.2603	0.2589	0.2588	0.2581	0.2581	0.2580	0.2580	0.2580
0.2595	0.2604	0.2625	0.2602	0.2603	0.2596	0.2596	0.2596	0.2595	0.2595
0.2668	0.2677	0.2717	0.2693	0.2677	0.2670	0.2669	0.2669	0.2669	0.2669
0.2625	0.2630	0.2682	0.2639	0.2632	0.2627	0.2627	0.2626	0.2626	0.2626
0.2677	0.2673	0.2710	0.2688	0.2678	0.2679	0.2678	0.2678	0.2678	0.2678
0.2659	0.2652	0.2651	0.2669	0.2657	0.2667	0.2661	0.2661	0.2661	0.2661
0.2711	0.2699	0.2688	0.2727	0.2707	0.2713	0.2714	0.2714	0.2714	0.2714
0.2677	0.2661	0.2648	0.2680	0.2660	0.2696	0.2692	0.2692	0.2692	0.2692
0.2695	0.2681	0.2475	0.2252	0.2459	0.2700	0.2699	0.2699	0.2699	0.2699
0.2677	0.2661	0.2649	0.2680	0.2660	0.2696	0.2692	0.2692	0.2692	0.2692
0.2711	0.2699	0.2690	0.2727	0.2707	0.2713	0.2714	0.2714	0.2714	0.2714
0.2659	0.2652	0.2652	0.2669	0.2657	0.2667	0.2661	0.2661	0.2661	0.2661
0.2677	0.2673	0.2710	0.2688	0.2678	0.2679	0.2678	0.2678	0.2678	0.2678
0.2625	0.2630	0.2682	0.2639	0.2632	0.2627	0.2627	0.2626	0.2626	0.2626
0.2668	0.2677	0.2717	0.2693	0.2677	0.2670	0.2669	0.2669	0.2669	0.2669
0.2595	0.2604	0.2625	0.2602	0.2603	0.2596	0.2596	0.2596	0.2595	0.2595
0.2580	0.2589	0.2603	0.2589	0.2588	0.2581	0.2581	0.2580	0.2580	0.2580
0.2573	0.2582	0.2591	0.2570	0.2582	0.2575	0.2574	0.2574	0.2574	0.2574
0.2415	0.2423	0.2441	0.2435	0.2425	0.2415	0.2415	0.2415	0.2415	0.2415

TABLE 3. Single turbine in the EDF flume at a tip speed ratio of $\gamma = 4.0$: Depth averaged turbulent kinetic energy. The value for the cell containing the turbine has been underlined

			SU	ream wise	direction	\rightarrow			
1.07e-03	1.11e-03	1.20e-03	1.28e-03	1.31e-03	1.31e-03	1.31e-03	1.30e-03	1.30e-03	1.22e-03
4.60e-04	5.36e-04	5.80e-04	6.40e-04	6.61e-04	6.77 e- 04	6.90e-04	7.02e-04	7.18e-04	7.41e-04
4.56e-04	5.21e-04	5.71e-04	6.28e-04	6.39e-04	6.56e-04	6.67 e- 04	6.78e-04	6.92 e- 04	7.23e-04
4.43e-04	5.05e-04	5.48e-04	5.97 e- 04	6.15e-04	6.30e-04	6.39e-04	6.47 e- 04	6.55e-04	6.69e-04
3.86e-04	4.56e-04	4.84e-04	5.25e-04	5.54 e- 04	5.73e-04	5.82e-04	5.88e-04	5.95e-04	5.89e-04
4.35e-04	4.94e-04	5.40e-04	6.05e-04	6.41e-04	6.72 e- 04	6.82e-04	6.85e-04	6.83e-04	6.09e-04
4.02e-04	4.64 e- 04	5.34 e- 04	7.52e-04	9.10e-04	9.60e-04	9.38e-04	9.04 e- 04	8.55e-04	6.00e-04
4.23e-04	4.83e-04	5.49e-04	7.05e-04	8.34e-04	8.81e-04	8.77e-04	8.48e-04	8.05e-04	5.92 e- 04
3.95e-04	4.65e-04	5.24 e- 04	6.75e-04	7.82e-04	7.85e-04	7.74e-04	7.39e-04	6.97 e- 04	5.47 e- 04
4.51e-04	5.08e-04	1.42e-03	1.50e-03	8.04 e- 04	5.79e-04	5.29e-04	4.92e-04	4.68e-04	5.40e-04
4.64e-04	5.15e-04	2.45e-03	2.65e-03	1.13e-03	6.19e-04	4.80e-04	4.20e-04	3.94e-04	5.47 e- 04
4.51e-04	5.08e-04	1.43e-03	1.37e-03	8.70e-04	6.20e-04	5.25e-04	4.81e-04	4.63e-04	5.56e-04
3.95e-04	4.64e-04	5.27 e- 04	6.93e-04	7.95e-04	7.90e-04	7.81e-04	7.54e-04	7.22e-04	5.81e-04
4.23e-04	4.83e-04	5.51e-04	7.21e-04	8.53e-04	9.21e-04	9.28e-04	9.04 e- 04	8.63e-04	6.38e-04
4.02e-04	4.63e-04	5.36e-04	7.66e-04	9.29e-04	9.96e-04	9.91e-04	9.69e-04	9.28e-04	6.50e-04
4.35e-04	4.93e-04	5.40e-04	6.06e-04	6.45 e- 04	6.80e-04	6.93 e- 04	7.00e-04	7.03e-04	6.38e-04
3.86e-04	4.56e-04	4.83e-04	5.25e-04	5.54 e- 04	5.74e-04	5.84e-04	5.91e-04	5.99e-04	6.05e-04
4.43e-04	5.05e-04	5.47 e-04	5.96e-04	6.15e-04	6.31e-04	6.40e-04	6.48e-04	6.57 e- 04	6.79e-04
4.56e-04	5.21e-04	5.71e-04	6.27 e- 04	6.39e-04	6.56e-04	6.68e-04	6.79e-04	6.93e-04	7.28e-04
4.60e-04	5.36e-04	5.79e-04	6.39e-04	6.62 e- 04	6.76e-04	6.90e-04	7.03e-04	7.19e-04	7.42e-04
1.07 e-03	1.10e-03	1.20e-03	1.28e-03	1.31e-03	1.31e-03	1.31e-03	1.31e-03	1.30e-03	1.22e-03

stream wise direction \rightarrow

TABLE 4. Single turbine in the EDF flume at a tip speed ratio of $\gamma = 4.0$: Depth averaged turbulent viscosity. The value for the cell containing the turbine has been underlined

	•	1	
stream	WISE	direction	\rightarrow
DOI COULL	11100	un 0001011	

0.0800	0.0926	0.0974	0.1026	0.1048	0.1085	0.1109	0.1132	0.1158	0.1226
0.2312	0.2666	0.2804	0.3317	0.3729	0.3438	0.3391	0.3400	0.3432	0.3632
1.0007	0.9890	0.6176	0.7113	1.2369	1.2465	1.0796	1.0130	0.9693	0.8780
4.1645	3.0616	0.8809	1.3242	2.3596	2.4868	1.9668	1.6709	1.5059	1.9190
7.1444	3.7846	0.9353	1.8713	2.5800	2.6037	2.0130	1.6739	1.4674	1.7670
8.5392	3.6338	0.7018	1.4160	1.6840	1.2235	1.0296	0.9411	0.8876	1.7962
8.5473	3.2124	0.3296	0.4649	0.5492	0.5293	0.5367	0.5515	0.5755	1.3382
9.2228	3.0399	0.3374	0.4975	0.4581	0.4986	0.5282	0.5573	0.5965	1.6308
9.1551	2.9429	0.3159	0.3829	0.4003	0.4733	0.5029	0.5314	0.5661	1.8045
10.227	3.1585	0.1829	0.1504	0.1591	0.2200	0.2749	0.3143	0.3718	2.3280
13.138	3.7962	0.1244	0.0727	0.1052	0.1644	0.2038	0.2345	0.2921	3.3508
10.243	3.1912	0.1844	0.1364	0.1468	0.2035	0.2446	0.2799	0.3426	2.4512
9.1270	2.9405	0.3147	0.3805	0.3562	0.3946	0.4399	0.4819	0.5356	2.0462
9.2076	3.0106	0.3371	0.5064	0.4579	0.5020	0.5394	0.5738	0.6188	1.8574
8.5259	3.2224	0.3318	0.4717	0.5476	0.5414	0.5590	0.5806	0.6136	1.5480
8.5674	3.6727	0.7039	1.4263	1.6828	1.2257	1.0449	0.9582	0.9079	2.0116
7.2038	3.8613	0.9481	1.8863	2.6076	2.5959	2.0178	1.6980	1.4969	1.9867
4.1400	3.0575	0.8907	1.3267	2.3407	2.4569	1.9476	1.6686	1.5110	1.9994
0.9996	0.9873	0.6213	0.7102	1.2133	1.2358	1.0823	1.0156	0.9711	0.9123
0.2311	0.2660	0.2805	0.3314	0.3724	0.3439	0.3394	0.3403	0.3436	0.3663
0.0800	0.0926	0.0974	0.1026	0.1048	0.1086	0.1110	0.1132	0.1158	0.1227

1.3.2. Tip speed ratio $\gamma = 4.5$. Figure 9 shows mosaic plots of the binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity. The bin containing the turbine hub is at (0,0,0.0) and it is easily identifiable in the velocity plot showing the expected velocity deficit associated with the flow passing the turbine face. Tables 5 to 7 present the binned mean values with the bin containing the turbine nacelle underlined.

3. RESULTS

FIGURE 9. Single turbine in the EDF flume at a tip speed ratio of $\gamma = 4.5$: Mosaic plots showing binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity.

32

TABLE 5. Single turbine in the EDF flume at a tip speed ratio of $\gamma = 4.5$: Depth averaged velocity magnitude. The value for the cell containing the turbine has been underlined

stream	wise	direction	\rightarrow
Suteam	wise	unection	\rightarrow

			5010	am wise	uncenor	1 /			
0.1560	0.1500	0.1613	0.1683	0.1684	0.1642	0.1615	0.1594	0.1570	0.1466
0.2268	0.2251	0.2330	0.2384	0.2501	0.2460	0.2433	0.2410	0.2382	0.2199
0.2401	0.2440	0.2523	0.2592	0.2656	0.2653	0.2646	0.2639	0.2627	0.2490
0.2473	0.2522	0.2616	0.2678	0.2755	0.2756	0.2755	0.2754	0.2752	0.2674
0.2634	0.2678	0.2831	0.2928	0.2945	0.2940	0.2939	0.2939	0.2939	0.2889
0.2573	0.2610	0.2754	0.2840	0.2872	0.2869	0.2871	0.2872	0.2873	0.2827
0.2731	0.2758	0.2689	0.2440	0.2433	0.2463	0.2530	0.2579	0.2634	0.2798
0.2689	0.2703	0.2575	0.2378	0.2358	0.2333	0.2408	0.2436	0.2473	0.2624
0.2795	0.2796	0.2655	0.2513	0.2393	0.2347	0.2420	0.2432	0.2444	0.2586
0.2734	0.2710	0.2685	0.2475	0.2508	0.2439	0.2360	0.2338	0.2331	0.2442
0.2805	0.2762	0.2526	0.1798	0.1853	0.2166	0.2216	0.2243	0.2266	0.2426
0.2734	0.2710	0.2704	0.2360	0.2191	0.2293	0.2357	0.2361	0.2355	0.2464
0.2796	0.2797	0.2662	0.2523	0.2398	0.2326	0.2427	0.2470	0.2512	0.2655
0.2690	0.2703	0.2579	0.2379	0.2355	0.2316	0.2375	0.2400	0.2444	0.2676
0.2731	0.2758	0.2693	0.2440	0.2429	0.2443	0.2494	0.2533	0.2573	0.2810
0.2574	0.2610	0.2755	0.2840	0.2872	0.2869	0.2870	0.2871	0.2871	0.2844
0.2635	0.2678	0.2831	0.2928	0.2945	0.2941	0.2940	0.2939	0.2939	0.2901
0.2474	0.2522	0.2616	0.2677	0.2755	0.2756	0.2755	0.2754	0.2752	0.2680
0.2402	0.2439	0.2523	0.2592	0.2655	0.2653	0.2646	0.2638	0.2626	0.2494
0.2268	0.2251	0.2330	0.2383	0.2501	0.2459	0.2433	0.2409	0.2380	0.2203
0.1560	0.1501	0.1613	0.1682	0.1684	0.1643	0.1616	0.1594	0.1569	0.1468

TABLE 6. Single turbine in the EDF flume at a tip speed ratio of $\gamma = 4.5$: Depth averaged turbulent kinetic energy. The value for the cell containing the turbine has been underlined

			\mathbf{st}	ream wise	direction	\rightarrow			
1.03e-03	1.05e-03	1.13e-03	1.20e-03	1.22e-03	1.21e-03	1.21e-03	1.20e-03	1.19e-03	1.13e-03
3.62e-04	4.09e-04	4.47e-04	5.12e-04	5.10e-04	5.12e-04	5.24 e- 04	5.38e-04	5.58e-04	6.87 e- 04
2.82e-04	3.01e-04	3.53e-04	4.06e-04	3.77e-04	3.81e-04	3.89e-04	3.98e-04	4.13e-04	5.88e-04
2.25e-04	2.35e-04	2.78e-04	3.24e-04	2.92e-04	2.93e-04	2.96e-04	3.00e-04	3.06e-04	4.51e-04
1.40e-04	1.57e-04	1.58e-04	1.85e-04	1.90e-04	1.98e-04	2.01e-04	2.05e-04	2.09e-04	3.19e-04
1.51e-04	1.56e-04	1.85e-04	2.13e-04	1.95e-04	1.95e-04	1.98e-04	2.02e-04	2.09e-04	3.04e-04
5.89e-05	6.10e-05	7.03e-05	7.94e-05	8.45e-05	1.36e-04	2.11e-04	2.75e-04	3.32e-04	3.71e-04
7.72e-05	8.02e-05	9.42 e- 05	1.14e-04	1.37e-04	1.69e-04	2.27e-04	2.61e-04	3.00e-04	3.59e-04
3.57e-05	4.85e-05	3.82e-05	6.73 e- 05	1.05e-04	1.29e-04	1.74e-04	1.96e-04	2.24e-04	2.99e-04
5.91 e- 05	6.47 e- 05	7.38e-04	1.01e-03	4.37e-04	3.28e-04	2.65e-04	2.09e-04	1.74e-04	1.81e-04
2.47 e- 05	2.69e-05	<u>1.36e-03</u>	2.15e-03	9.62 e- 04	4.81e-04	3.24e-04	2.54e-04	1.97e-04	1.50e-04
5.91 e- 05	6.46e-05	7.54e-04	8.81e-04	4.97e-04	3.11e-04	2.83e-04	2.55e-04	2.18e-04	2.01e-04
3.57e-05	4.86e-05	3.78e-05	6.02 e- 05	9.97 e- 05	1.43e-04	1.93e-04	2.09e-04	2.26e-04	3.23e-04
7.72e-05	8.01e-05	9.40e-05	1.09e-04	1.17e-04	1.39e-04	2.05e-04	2.51e-04	2.93e-04	3.78e-04
5.90e-05	6.08e-05	7.04 e- 05	7.88e-05	7.94e-05	1.01e-04	1.57e-04	2.26e-04	3.13e-04	3.80e-04
1.51e-04	1.56e-04	1.85e-04	2.13e-04	1.95e-04	1.95e-04	1.98e-04	2.01e-04	2.10e-04	3.14e-04
1.40e-04	1.57e-04	1.58e-04	1.85e-04	1.90e-04	1.98e-04	2.02e-04	2.05e-04	2.09e-04	3.23e-04
2.25e-04	2.35e-04	2.78e-04	3.24e-04	2.92e-04	2.93e-04	2.96e-04	3.01e-04	3.07e-04	4.54e-04
2.81e-04	3.00e-04	3.53e-04	4.05e-04	3.77e-04	3.81e-04	3.89e-04	3.99e-04	4.15e-04	5.89e-04
3.62e-04	4.08e-04	4.47e-04	5.11e-04	5.10e-04	5.13e-04	5.25e-04	5.39e-04	5.60e-04	6.88e-04
1.03e-03	1.05e-03	1.13e-03	1.20e-03	1.22e-03	1.22e-03	1.21e-03	1.20e-03	1.19e-03	1.14e-03

TABLE 7. Single turbine in the EDF flume at a tip speed ratio of $\gamma = 4.5$: Depth averaged turbulent viscosity. The value for the cell containing the turbine has been underlined

stream wise direction \rightarrow

7.33e-02	8.42e-02	8.60e-02	8.76e-02	8.94e-02	9.32e-02	9.56e-02	9.78e-02	1.00e-01	1.14e-01
8.02e-02	9.97 e- 02	1.05e-01	1.14e-01	1.24e-01	1.37e-01	1.40e-01	1.46e-01	1.54e-01	2.45e-01
5.92 e- 02	7.19e-02	7.60e-02	8.22e-02	9.64 e- 02	1.11e-01	1.17e-01	1.25e-01	1.37e-01	3.02e-01
4.18e-02	4.69e-02	4.75e-02	5.92 e- 02	6.64 e- 02	7.63e-02	8.05e-02	8.60e-02	9.48e-02	3.13e-01
3.47 e- 02	3.65e-02	3.46e-02	5.09e-02	5.42 e- 02	5.64 e- 02	5.94 e- 02	6.29e-02	6.86e-02	2.86e-01
1.92e-02	1.94e-02	1.83e-02	2.92e-02	3.34e-02	3.45e-02	3.61e-02	3.86e-02	4.36e-02	2.33e-01
9.64 e- 03	9.07 e- 03	6.93 e- 03	1.00e-02	1.34e-02	2.63e-02	4.64 e- 02	6.86e-02	9.71e-02	2.71e-01
2.07e-02	1.71e-02	9.64 e- 03	1.49e-02	2.14e-02	3.53e-02	5.47 e- 02	7.17e-02	9.56e-02	2.71e-01
2.30e-02	2.65e-02	1.29e-02	2.14e-02	2.93e-02	3.93e-02	5.68e-02	7.01e-02	9.14e-02	2.80e-01
2.90e-02	2.59e-02	1.07e-02	2.38e-02	3.46e-02	6.10e-02	7.37e-02	7.48e-02	7.82e-02	2.27e-01
2.97 e- 02	2.45e-02	<u>8.74e-03</u>	2.72e-02	6.16e-02	9.23 e- 02	9.77e-02	9.82e-02	9.79e-02	2.26e-01
3.00e-02	2.62e-02	1.08e-02	2.75e-02	4.89e-02	6.75e-02	8.11e-02	8.83e-02	9.28e-02	2.47e-01
2.32e-02	2.65e-02	1.28e-02	1.92e-02	2.66e-02	4.11e-02	5.87 e-02	7.01e-02	8.63e-02	3.02e-01
2.16e-02	1.74e-02	9.56e-03	1.34e-02	1.60e-02	2.43e-02	4.16e-02	5.87 e-02	8.15e-02	2.87 e-01
1.02e-02	9.15e-03	6.94 e- 03	9.91e-03	1.21e-02	1.74e-02	3.05e-02	5.01e-02	8.16e-02	2.89e-01
1.89e-02	1.95e-02	1.84e-02	2.93e-02	3.35e-02	3.46e-02	3.61e-02	3.84e-02	4.36e-02	2.39e-01
3.52e-02	3.72e-02	3.47e-02	5.10e-02	5.44 e- 02	5.67 e- 02	5.99e-02	6.38e-02	7.02e-02	2.92e-01
4.27 e- 02	4.74e-02	4.75e-02	5.93 e- 02	6.66e-02	7.69e-02	8.18e-02	8.81e-02	9.81e-02	3.21e-01
6.08e-02	7.26e-02	7.60e-02	8.22e-02	9.69e-02	1.11e-01	1.19e-01	1.27 e-01	1.41e-01	3.05e-01
8.01e-02	9.92e-02	1.06e-01	1.14e-01	1.25e-01	1.38e-01	1.41e-01	1.47e-01	1.55e-01	2.44e-01
7.33e-02	8.42e-02	8.61e-02	8.76e-02	8.94 e- 02	9.33e-02	9.57 e- 02	9.78e-02	1.00e-01	1.14e-01
2. Array of turbines in series

To demonstrate the application of the model to arrays of turbines two cases have been considered. Both were modelled experimentally by the University of Manchester as test 19 (turbines in series) and test 20 (staggered turbines). In both cases two infinite-width rows of turbines have been simulated by imposing symmetry boundary conditions at the cross-flow (east and west) boundaries of the Code_Saturne simulation. This section presents results from Manchester test 19, while section 3 considers Manchester test 20.

FIGURE 10. Detail from the ICEM mesh generator showing the crosssectional grid (blue), the solid volumes for the nacelle (green) and the refined mesh region in the neighbourhood of the upstream actuator disk.

2.1. Computational set-up. The meshing strategy employed (again using ICEM) is similar to that used in the single turbine case. A cylindrical O-grid which extends throughout the entire computational domain has been used to discretise the rotor plane, this O-grid has 15 cells in the radial direction and 24 cells in the circumferential direction. Mesh stretching has been used to refine the grid at the edge of the rotor so the shear between the free stream flow and the fluid which has passed through the actuator disk is sufficiently resolved. In this case only the nacelles have been included in the computation and there are no support structures. In meshing the nacelle a 6×6 H-grid region has

FIGURE 11. Arrangement of the turbines for the array test with two rows of turbines in series.

been used at the centre of the O-grid, though this does not form part of the actuator disk. The computational domain extends from 30 diameters downstream of the downstream turbine and 3 diameters upstream of the upstream turbine. Figure 11 shows a schematic of the problem set-up.

The blade geometry used in these tests is shown in Table 8. The required tables of for coefficients of lift, C_L , and drag C_D , against angle of attack, α , for the GOE804 airfoil were obtained from the University of Manchester are can be found in the file Goe804.txt, the lift and drag coefficients for the airfoil are plotted in Figure ??. usinv.f90, ustsns.f90 were modified to create two actuator disks, located on for the faces of the upstream and downstream rotors. The source code for the user routines, together with the files blade.txt, circle.txt and Geo804.txt are included on the accompanying CD in the Double directory.

For all four tip-speed ratios ($\gamma = 3.5, 4.0, 5.5, \text{ and } 6.0$) the left and right walls of the computational domain were specified as symmetry conditions (with the zero normal flow condition imposed) to simulate an infinite width array. The top of the computational domain was also set as a symmetry condition to mimic a free surface with minimal deformation, while the lower boundary was set as a no-slip wall, with a roughness of

FIGURE 12. Coefficients of aerodynamic lift, C_L , and drag, C_D , for a GOE 804 airfoil.

FIGURE 13. Predicted and measure mean velocity profiles at the location of the upstream rotor in the Manchester tests of an array of turbines in series, in an empty channel.

Radial	Twist	Chord	Thickness	Section
ordinate	angle	length	type	
0.001	38.4	0.0150	100%	Circle
0.015	38.4	0.0150	100%	Circle
0.033	22.9	0.0200	4%	Goe 804
0.045	16.0	0.0300	4%	Goe 804
0.059	11.3	0.0275	4%	Goe 804
0.073	9.0	0.0250	4%	Goe 804
0.085	7.5	0.0223	4%	Goe 804
0.099	5.8	0.0195	4%	Goe 804
0.113	4.1	0.0175	4%	Goe 804
0.125	3.1	0.0155	4%	Goe 804
0.135	2.6	0.0130	4%	Goe 804

TABLE 8. Blade geometry for the three bladed horizontal axis tidal turbine tested in the Manchester array tests.

 $\epsilon = 6^{-6}$. The upstream boundary condition (located 3 diameters upstream of the rotor face) has a velocity profile designed to match that of the Manchester experiments with 10% turbulence intensity (Figure 13). The Code_Saturne computations were run using the transient solver with a reference time step of 0.001 seconds, an adaptive time step was used with a maximum Courant number of 1.0. Convergence was accelerated by using local time-stepping and the solution was run for 3000 iterations. In this case the $k - \epsilon$ turbulence model was used as it is able to cope with rough walls. Full details of the setup are to be found in the Code_Saturne setup file, D5_CASE.xml which is to be found on the accompanying CD, also in the Double directory. Figures 14 to 17 show various pseudocolour plots of the axial velocity distribution from the $\gamma = 3.5$ simulations with both smooth and rough floors, it should be noted in these plots that because the z-ordinate vector is pointing downstream higher velocities appear in blue and lower velocities in red.

Before considering the depth averaged results, the axial velocity profiles are presented (Figure 18). These results show the drop in velocity as the flow passes the upstream turbine followed by a region of recovery and then a second drop before the wake recovers towards the free stream. It is interesting to note that the wake behind the first turbine recovers faster than the second, due to the presence of the downstream turbine. It is also important to note that the wake down stream of both turbines recovers more quickly than may normally be expected, this is due to enhanced mixing caused by the symmetry planes in the array model which mimic contra-rotating turbines on either side of the simulated turbines.

For this case (Manchester test 19) comparisons with experimental data have not been made as the required experimental measurements have not yet been received from the University of Manchester, though they have been promised. Once the data has been received comparisons will be made and discussed as part of deliverable D5b.

FIGURE 14. Two row array of horizontal axis tidal turbines in series: axial (Z) velocity distribution on the front actuator disc from a simulation with a smooth lower wall at a tip speed ratio of $\gamma = 3.5$, after 1642 iterations.

FIGURE 15. Two row array of horizontal axis tidal turbines in series: axial (Z) velocity distribution through the central, vertical, plane of the water column from a simulation with a smooth lower wall at a tip speed ratio of $\gamma = 3.5$, after 1642 iterations.

2. ARRAY OF TURBINES IN SERIES

FIGURE 16. Two row array of horizontal axis tidal turbines in series: axial (Z) velocity distribution on the down stream actuator disc from a simulation with a smooth lower wall at a tip speed ratio of $\gamma = 3.5$, after 1642 iterations.

FIGURE 17. Two row array of horizontal axis tidal turbines in series: axial (Z) velocity distribution through the central, vertical, plane of the water column from a simulation with a rough lower wall at a tip speed ratio of $\gamma = 3.5$, after 3000 iterations.

FIGURE 18. Axial velocity distribution from two turbines in series at a tip speed ratio of $\gamma = 4.5$.

FIGURE 19. Psudo-colour plot showing velocity magnitude for a section through the centre of the computational domain for a case with two turbines in series a tip speed ratio of $\gamma = 3.5$.

2.2. Depth averaged results. Figure 19 shows a psudo-colour plot of the velocity magnitude from the three dimensional Reynolds averaged Navier-Stokes simulations, at a tip-speed ratio of $\gamma = 3.5$. For all the cases presented the computational domain in the neighbourhood of the two turbines has been binned using 19 bins in the stream wise direction from 11 diameters upstream of the downstream turbine (z = -3.0m) to 9 diameters downstream of the same turbine (z = 2.5m). 11 bins have been used in the cross flow direction. The origin of the computational domain is located at the centre of the front face of the downstream turbine and orientated so the flow direction is from right to left in the mosaic plots.

The depth averaged velocity plots for all four tip speed ratios, clearly show retardation on the centre line of the turbine, with the minimum velocities occurring just downstream of the turbine face, and acceleration of the flow towards the left and right symmetry planes, resulting in fluid jets bypassing the turbines., this jetting effect is more pronounced at higher tip speed ratios. This effect is due to the close, horizontal, packing of the turbines in the array. As in the previous case, as flow passes the nacelle most turbulence is generated. It should also be noted that an side-effect of the use of symmetry conditions to limit the width of the computational domain is that the fluid behaves as if the turbines in each row are contra-rotating.

2.2.1. Tip speed ratio $\gamma = 3.5$. Figure 20 shows mosaic plots of the binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity. The bin containing the upstream hub is at (2.1,0.0) while the downstream hub is at (0.0,0.0) and it is easily identifiable in the velocity plot showing the expected velocity deficit associated with the flow passing the turbine face. Tables 9 to 11 present the binned mean values with the bin containing the turbine nacelle underlined.

FIGURE 20. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 3.5$: Mosaic plots showing binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity.

TABLE 9. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 3.5$: Depth averaged velocity magnitude. The value for the cells containing the turbines have been underlined

	$\operatorname{downstream}$					stream	am wise	direction	ι ←				
1	0.4481	0.4541	0.4560	0.4583	0.4608	0.4637	0.4684	0.4750	0.4828	0.4924	0.4800	0.4594	0.4614
2	0.4402	0.4416	0.4421	0.4427	0.4434	0.4442	0.4455	0.4473	0.4493	0.4530	0.4543	0.4440	0.4447
3	0.4530	0.4505	0.4499	0.4492	0.4486	0.4478	0.4468	0.4453	0.4434	0.4404	0.4466	0.4495	0.4494
4	0.4354	0.4358	0.4357	0.4354	0.4350	0.4344	0.4333	0.4315	0.4290	0.4235	0.4274	0.4366	0.4369
5	0.4527	0.4451	0.4426	0.4397	0.4367	0.4330	0.4270	0.4184	0.4084	0.3985	0.4189	0.4396	0.4377
6	0.4509	0.4389	0.4351	0.4304	0.4250	0.4189	0.4083	0.3926	0.3750	0.3664	0.3909	0.4267	0.4231
$\overline{7}$	0.4535	0.4459	0.4434	0.4405	0.4374	0.4338	0.4277	0.4192	0.4092	0.3992	0.4195	0.4398	0.4378
8	0.4375	0.4376	0.4374	0.4371	0.4365	0.4358	0.4346	0.4328	0.4302	0.4244	0.4282	0.4370	0.4372
9	0.4550	0.4521	0.4514	0.4507	0.4500	0.4492	0.4481	0.4465	0.4444	0.4413	0.4474	0.4498	0.4496
10	0.4429	0.4437	0.4440	0.4445	0.4450	0.4457	0.4468	0.4484	0.4503	0.4537	0.4550	0.4444	0.4449
11	0.4508	0.4557	0.4573	0.4594	0.4618	0.4645	0.4691	0.4754	0.4831	0.4927	0.4804	0.4597	0.4614
				s	stream w	ise direc	tion \leftarrow		inlet				
			1	0.4646	0.4684	0.4732	0.4803	0.4731	0.4499	_			
			2	0.4458	0.4469	0.4481	0.4499	0.4541	0.4428				
			3	0.4478	0.4471	0.4451	0.4433	0.4482	0.4505				
			4	0.4359	0.4355	0.4330	0.4317	0.4323	0.4417				
			5	0.4323	0.4265	0.4168	0.4107	0.4252	0.4497				
			6	0.4144	0.4038	0.3918	0.3810	0.3945	0.4461				
			7	0.4324	0.4266	0.4168	0.4107	0.4251	0.4497				
			8	0.4361	0.4357	0.4331	0.4317	0.4322	0.4417				
			9	0.4480	0.4472	0.4452	0.4433	0.4482	0.4505				
			10	0.4459	0.4469	0.4481	0.4498	0.4541	0.4427				
			11	0.4646	0.4684	0.4731	0.4803	0.4731	0.4498				

TABLE 10. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 3.5$: Depth averaged turbulent kinetic energy. The value for the cells containing the turbines have been underlined

d	ownstream				\mathbf{st}	ream wise	direction \cdot	\leftarrow			
1	1.05e-03	1.69e-03	1.81e-03	1.92e-03	2.02e-03	2.09e-03	2.15e-03	2.14e-03	2.03e-03	1.80e-03	1.71e-03
2	1.05e-03	1.74e-03	1.88e-03	2.02e-03	2.16e-03	2.29e-03	2.47e-03	2.64 e- 03	2.77e-03	2.68e-03	2.12e-03
3	1.11e-03	1.85e-03	2.01e-03	2.18e-03	2.36e-03	2.53e-03	2.78e-03	3.06e-03	3.29e-03	3.26e-03	2.49e-03
4	1.08e-03	1.74e-03	1.88e-03	2.03e-03	2.19e-03	2.34e-03	2.54e-03	2.76e-03	2.91e-03	2.83e-03	2.25e-03
5	1.14e-03	1.88e-03	2.05e-03	2.23e-03	2.41e-03	2.60e-03	2.85e-03	3.11e-03	3.25e-03	3.17e-03	2.64 e- 03
6	1.14e-03	1.93e-03	2.10e-03	2.28e-03	2.47e-03	2.63e-03	2.83e-03	2.92e-03	2.66e-03	2.41e-03	3.55e-03
7	1.14e-03	1.90e-03	2.07e-03	2.25e-03	2.43e-03	2.62e-03	2.88e-03	3.13e-03	3.26e-03	3.18e-03	2.64 e- 03
8	1.09e-03	1.76e-03	1.90e-03	2.05e-03	2.21e-03	2.36e-03	2.57e-03	2.78e-03	2.93e-03	2.83e-03	2.25e-03
9	1.13e-03	1.89e-03	2.05e-03	2.22e-03	2.39e-03	2.57e-03	2.81e-03	3.08e-03	3.30e-03	3.26e-03	2.49e-03
10	1.08e-03	1.78e-03	1.92e-03	2.06e-03	2.19e-03	2.32e-03	2.49e-03	2.66e-03	2.77e-03	2.68e-03	2.13e-03
11	1.07e-03	1.73e-03	1.84e-03	1.95e-03	2.05e-03	2.12e-03	2.17e-03	2.16e-03	2.05e-03	1.81e-03	1.72e-03
				stream	n wise dire	ection \leftarrow			in	let	
	_	1 1.74e	-03 1.84e-	-03 1.94e-	03 2.01e-	03 2.06e-0	03 2.07e-0	03 2.09e-0	03 2.35e-	03	
		2 1.82e	-03 1.96e	-03 2.13e-	03 2.29e-	03 2.47e-0	03 2.65e-0	03 2.38e-0	03 2.29e-	03	
		3 1.98e	-03 2.15e	-03 2.38e-	03 2.60e-	03 2.85e-0	03 3.10e-0	03 2.72e-0	03 2.44e-	03	
		4 1.82e	-03 1.93e	-03 2.17e-	03 2.33e-	03 2.55e-0	03 2.71e-0	03 2.47e-0	03 2.28e-	03	
		5 1.99e	-03 2.16e	-03 2.40e-	03 2.61e-	03 2.82e-0	03 3.04e-0	03 2.90e-0	03 2.48e-	03	
		6 2.02e	-03 2.15e	-03 2.33e-	03 2.43e-	03 2.42e-0	03 2.23e-0	03 3.36e-0	03 2.46e-	03	
		$7 \overline{2.00e}$	-03 2.17e-	-03 2.40e-	03 2.62e-	03 2.83e-0	03 3.04e-0	$03 \overline{2.90e}$ -($\overline{03}$ 2.48e-	03	
		8 1.83e	-03 1.94e-	-03 2.18e-	03 2.34e-	03 2.56e-0	03 2.72e-0	03 2.47e-0	03 2.28e-	03	
		9 2.00e	-03 2.16e-	-03 2.39e-	03 2.61e-	03 2.86e-0	03 3.11e-0	03 2.73e-0	03 2.44e-	03	
		10 1.84e	-03 1.97e-	-03 2.14e-	03 2.30e-	03 2.47e-0	03 2.66e-0	03 2.38e-0	03 2.29e-	03	
		11 1.75e	-03 1.85e-	-03 1.94e-	03 2.02e-	03 2.07e-0	03 2.07e-0	03 2.09e-0	03 2.35e-	03	

46

TABLE 11. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 3.5$: Depth averaged turbulent viscosity. The value for the cells containing the turbines have been underlined

	downstream					stres	am wise	direction	$\iota \leftarrow$				
1	1.1253	1.3566	1.3900	1.4198	1.4439	1.4604	1.4677	1.4508	1.3973	1.2758	1.2080	1.1934	1.2059
2	1.1538	1.3634	1.3931	1.4200	1.4431	1.4619	1.4814	1.4953	1.4988	1.4650	1.3205	1.1982	1.2134
3	1.2077	1.4316	1.4637	1.4937	1.5209	1.5452	1.5766	1.6125	1.6479	1.6493	1.4671	1.2785	1.2961
4	1.0904	1.2814	1.3071	1.3308	1.3593	1.3779	1.3999	1.4199	1.4305	1.4059	1.2846	1.1253	1.1198
5	1.2053	1.4226	1.4528	1.4809	1.5031	1.5235	1.5397	1.5284	1.4609	1.3200	1.2843	1.2554	1.2670
6	1.2654	1.4609	1.4879	1.5116	1.5288	1.5347	1.5038	1.3511	0.9378	0.4597	0.3875	1.2714	1.2481
7	1.2210	1.4399	1.4696	1.4974	1.5188	1.5387	1.5539	1.5406	1.4689	1.3218	1.2858	1.2613	1.2725
8	1.1132	1.3054	1.3302	1.3530	1.3805	1.3981	1.4187	1.4367	1.4448	1.4158	1.2902	1.1327	1.1262
9	1.2488	1.4748	1.5051	1.5330	1.5579	1.5797	1.6075	1.6391	1.6709	1.6670	1.4785	1.2904	1.3064
10	1.1939	1.4041	1.4317	1.4563	1.4769	1.4931	1.5088	1.5184	1.5182	1.4795	1.3313	1.2083	1.2219
11	1.1700	1.4012	1.4320	1.4589	1.4795	1.4924	1.4952	1.4732	1.4155	1.2898	1.2202	1.2031	1.2134
				S	stream w	ise direc	tion \leftarrow		inlet				
			1	1.2144	1.2129	1.1979	1.1531	1.0823	1.1004	_			
			2	1.2300	1.2445	1.2576	1.2655	1.1637	1.0774				
			3	1.3292	1.3553	1.3907	1.4260	1.3198	1.1908				
			4	1.1755	1.1789	1.2080	1.2155	1.1526	1.0525				
			5	1.2887	1.2861	1.2525	1.2179	1.1757	1.2078				
			6	1.2298	1.1148	0.8803	0.5062	0.2851	1.1683				
			7	1.2935	1.2904	1.2562	1.2208	1.1768	1.2078				
			8	1.1817	1.1841	1.2124	1.2186	1.1539	1.0525				
			9	1.3377	1.3622	1.3960	1.4297	1.3214	1.1908				
			10	1.2369	1.2498	1.2615	1.2680	1.1648	1.0775				
			11	1.2196	1.2164	1.1999	1.1541	1.0824	1.1004				

2.2.2. Tip speed ratio $\gamma = 4.0$. Figure 21 shows mosaic plots of the binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity. The bin containing the upstream hub is at (2.1,0.0) while the downstream hub is at (0.0,0.0) and it is easily identifiable in the velocity plot showing the expected velocity deficit associated with the flow passing the turbine face. Tables 12 to 14 present the binned mean values with the bin containing the turbine nacelle underlined.

FIGURE 21. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 4.0$: Mosaic plots showing binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity.

TABLE 12. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 4.0$: Depth averaged velocity magnitude. The value for the cells containing the turbines have been underlined

	downstream					stream	am wise o	direction	ι ←				
1	0.4457	0.4524	0.4546	0.4572	0.4602	0.4638	0.4697	0.4784	0.4894	0.5049	0.4898	0.4611	0.4637
2	0.4391	0.4406	0.4411	0.4418	0.4426	0.4435	0.4452	0.4475	0.4501	0.4536	0.4556	0.4440	0.4449
3	0.4516	0.4494	0.4488	0.4480	0.4472	0.4462	0.4447	0.4426	0.4396	0.4330	0.4403	0.4483	0.4481
4	0.4356	0.4358	0.4357	0.4355	0.4349	0.4343	0.4330	0.4309	0.4276	0.4189	0.4222	0.4360	0.4366
5	0.4524	0.4453	0.4428	0.4397	0.4363	0.4322	0.4251	0.4144	0.4009	0.3862	0.4130	0.4376	0.4353
6	0.4514	0.4405	0.4365	0.4316	0.4259	0.4191	0.4073	0.3892	0.3670	0.3621	0.3965	0.4241	0.4202
7	0.4542	0.4470	0.4445	0.4414	0.4380	0.4339	0.4268	0.4162	0.4028	0.3879	0.4139	0.4381	0.4357
8	0.4398	0.4399	0.4396	0.4392	0.4384	0.4376	0.4361	0.4339	0.4305	0.4214	0.4240	0.4372	0.4375
9	0.4559	0.4530	0.4522	0.4513	0.4504	0.4494	0.4478	0.4455	0.4424	0.4353	0.4417	0.4493	0.4489
10	0.4447	0.4452	0.4455	0.4458	0.4464	0.4470	0.4484	0.4505	0.4528	0.4556	0.4572	0.4451	0.4457
11	0.4516	0.4558	0.4574	0.4597	0.4625	0.4656	0.4713	0.4796	0.4902	0.5056	0.4907	0.4618	0.4641
				S	stream w	ise direc	tion \leftarrow		inlet				
			1	0.4681	tream w 0.4735	ise direct	$\frac{\text{tion} \leftarrow}{0.4910}$	0.4834	inlet 0.4507				
			1 2	0.4681 0.4463	tream w 0.4735 0.4478	ise direc 0.4802 0.4493	$ \begin{array}{r} \text{tion} \leftarrow \\ 0.4910 \\ 0.4512 \end{array} $	$0.4834 \\ 0.4563$	inlet 0.4507 0.4429				
			$\begin{array}{c} 1\\ 2\\ 3 \end{array}$	0.4681 0.4463 0.4460	tream w 0.4735 0.4478 0.4449	ise direct 0.4802 0.4493 0.4419	$ \begin{array}{r} \text{tion} \leftarrow \\ \hline 0.4910 \\ 0.4512 \\ 0.4382 \end{array} $	$\begin{array}{c} 0.4834 \\ 0.4563 \\ 0.4421 \end{array}$	inlet 0.4507 0.4429 0.4502				
			1 2 3 4	0.4681 0.4463 0.4460 0.4348		ise direct 0.4802 0.4493 0.4419 0.4310	$ \begin{array}{r} \text{tion} \leftarrow \\ \hline 0.4910 \\ 0.4512 \\ 0.4382 \\ 0.4287 \end{array} $	$\begin{array}{c} 0.4834 \\ 0.4563 \\ 0.4421 \\ 0.4269 \end{array}$	inlet 0.4507 0.4429 0.4502 0.4416				
			$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	0.4681 0.4463 0.4460 0.4348 0.4286		ise direct 0.4802 0.4493 0.4419 0.4310 0.4087	$\begin{array}{r} \text{tion} \leftarrow \\ 0.4910 \\ 0.4512 \\ 0.4382 \\ 0.4287 \\ 0.3995 \end{array}$	$\begin{array}{c} 0.4834 \\ 0.4563 \\ 0.4421 \\ 0.4269 \\ 0.4191 \end{array}$	inlet 0.4507 0.4429 0.4502 0.4416 0.4490				
			$\begin{array}{c}1\\2\\3\\4\\5\\6\end{array}$	$\begin{array}{r} & \\ 0.4681 \\ 0.4463 \\ 0.4460 \\ 0.4348 \\ 0.4286 \\ 0.4099 \end{array}$	tream w 0.4735 0.4478 0.4449 0.4345 0.4212 0.3972	ise direct 0.4802 0.4493 0.4419 0.4310 0.4087 0.3826	$\begin{array}{r} \text{tion} \leftarrow \\ 0.4910 \\ 0.4512 \\ 0.4382 \\ 0.4287 \\ 0.3995 \\ 0.3722 \end{array}$	$\begin{array}{c} 0.4834\\ 0.4563\\ 0.4421\\ 0.4269\\ 0.4191\\ \underline{0.4020} \end{array}$	inlet 0.4507 0.4429 0.4502 0.4416 0.4490 0.4456				
			$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\end{array}$	s 0.4681 0.4463 0.4460 0.4348 0.4286 0.4099 0.4290	tream w 0.4735 0.4478 0.4449 0.4345 0.4212 0.3972 0.4215	ise direct 0.4802 0.4493 0.4419 0.4310 0.4087 0.3826 0.4089	$\begin{array}{c} \text{tion} \leftarrow \\ \hline 0.4910 \\ 0.4512 \\ 0.4382 \\ 0.4287 \\ 0.3995 \\ 0.3722 \\ 0.3997 \end{array}$	$\begin{array}{c} 0.4834\\ 0.4563\\ 0.4421\\ 0.4269\\ 0.4191\\ \underline{0.4020}\\ 0.4191\end{array}$	inlet 0.4507 0.4429 0.4502 0.4416 0.4490 0.4456 0.4490				
			$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	$\begin{array}{c} & \\ \hline 0.4681 \\ 0.4463 \\ 0.4460 \\ 0.4348 \\ 0.4286 \\ 0.4099 \\ 0.4290 \\ 0.4355 \end{array}$	tream w 0.4735 0.4478 0.4449 0.4345 0.4212 0.3972 0.4215 0.4350	ise direc 0.4802 0.4493 0.4419 0.4310 0.4087 0.3826 0.4089 0.4314	$\begin{array}{r} \text{tion} \leftarrow \\ 0.4910 \\ 0.4512 \\ 0.4382 \\ 0.4287 \\ 0.3995 \\ 0.3722 \\ 0.3997 \\ 0.4289 \end{array}$	$\begin{array}{c} 0.4834\\ 0.4563\\ 0.4421\\ 0.4269\\ 0.4191\\ \underline{0.4020}\\ 0.4191\\ 0.4268\end{array}$	inlet 0.4507 0.4429 0.4502 0.4416 0.4490 0.4456 0.4490 0.4416				
			$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \end{array} $	$\begin{array}{c} & \\ & \\ \hline 0.4681 \\ 0.4463 \\ 0.4460 \\ 0.4348 \\ 0.4286 \\ 0.4099 \\ 0.4290 \\ 0.4290 \\ 0.4355 \\ 0.4466 \end{array}$	$\begin{array}{c} \text{ttream w} \\ \hline 0.4735 \\ 0.4478 \\ 0.4449 \\ 0.4345 \\ 0.4212 \\ 0.3972 \\ 0.4215 \\ 0.4350 \\ 0.4453 \end{array}$	ise direct 0.4802 0.4493 0.4419 0.4310 0.4087 0.3826 0.4089 0.4314 0.4423	$\begin{array}{c} \text{tion} \leftarrow \\ \hline 0.4910 \\ 0.4512 \\ 0.4382 \\ 0.4287 \\ 0.3995 \\ 0.3722 \\ 0.3997 \\ 0.4289 \\ 0.4384 \end{array}$	$\begin{array}{c} 0.4834\\ 0.4563\\ 0.4421\\ 0.4269\\ 0.4191\\ \underline{0.4020}\\ 0.4191\\ 0.4268\\ 0.4421\end{array}$	inlet 0.4507 0.4429 0.4502 0.4416 0.4490 0.4456 0.4490 0.4416 0.4490				
			$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10$	s 0.4681 0.4463 0.4460 0.4348 0.4286 0.4099 0.4290 0.4290 0.4355 0.4466 0 0.4468	$ tream w \\ \hline 0.4735 \\ 0.4478 \\ 0.4449 \\ 0.4345 \\ 0.4212 \\ 0.3972 \\ 0.4215 \\ 0.4350 \\ 0.4453 \\ 0.4481 $	ise direct 0.4802 0.4493 0.4419 0.4310 0.4087 0.3826 0.4089 0.4314 0.4423 0.4495	$\begin{array}{r} \text{tion} \leftarrow \\ 0.4910 \\ 0.4512 \\ 0.4382 \\ 0.4287 \\ 0.3995 \\ 0.3722 \\ 0.3997 \\ 0.4289 \\ 0.4384 \\ 0.4512 \end{array}$	$\begin{array}{c} 0.4834\\ 0.4563\\ 0.4421\\ 0.4269\\ 0.4191\\ \underline{0.4020}\\ 0.4191\\ 0.4268\\ 0.4421\\ 0.4563\end{array}$	inlet 0.4507 0.4429 0.4502 0.4416 0.4490 0.4456 0.4490 0.4416 0.4502 0.4429				

TABLE 13. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 4.0$: Depth averaged turbulent kinetic energy. The value for the cells containing the turbines have been underlined

	downstream				\mathbf{st}	ream wise	direction	\leftarrow			
1	1.29e-03	2.26e-03	2.46e-03	2.67e-03	2.86e-03	3.03e-03	3.20e-03	3.26e-03	3.11e-03	2.55e-03	2.23e-03
2	1.29e-03	2.30e-03	2.53e-03	2.77e-03	3.01e-03	3.26e-03	3.59e-03	3.98e-03	4.30e-03	4.39e-03	3.22e-03
3	1.37e-03	2.45e-03	2.71e-03	2.98e-03	3.28e-03	3.58e-03	4.04 e- 03	4.61e-03	5.17e-03	5.52e-03	4.01e-03
4	1.32e-03	2.30e-03	2.53e-03	2.77e-03	3.04e-03	3.31e-03	3.70e-03	4.17e-03	4.57e-03	4.74 e- 03	3.66e-03
5	1.42e-03	2.51e-03	2.78e-03	3.08e-03	3.39e-03	3.72e-03	4.21e-03	4.81e-03	5.29e-03	5.51e-03	4.24 e- 03
6	1.42e-03	2.58e-03	2.86e-03	3.16e-03	3.48e-03	3.81e-03	4.27 e- 03	4.72e-03	4.79e-03	4.07 e- 03	4.37e-03
7	1.44e-03	2.57e-03	2.84e-03	3.14e-03	3.45e-03	3.78e-03	4.28e-03	4.88e-03	5.36e-03	5.54 e- 03	4.24 e- 03
8	1.36e-03	2.37e-03	2.61e-03	2.85e-03	3.13e-03	3.40e-03	3.79e-03	4.25e-03	4.64e-03	4.77e-03	3.67e-03
9	1.43e-03	2.58e-03	2.84e-03	3.12e-03	3.42e-03	3.72e-03	4.16e-03	4.71e-03	5.24 e- 03	5.54 e-03	4.03e-03
10	1.36e-03	2.43e-03	2.66e-03	2.90e-03	3.14e-03	3.38e-03	3.70e-03	4.06e-03	4.35e-03	4.41e-03	3.24e-03
11	1.37e-03	2.40e-03	2.61e-03	2.81e-03	3.00e-03	3.16e-03	3.31e-03	3.36e-03	3.18e-03	2.61e-03	2.28e-03
				stream	n wise dire	ection \leftarrow			in	let	
	-	1 2.24e	-03 2.38e-	03 2.52e-0	03 2.61e-	03 2.63e-	03 2.49e-	03 2.16e-0	03 2.36e-	03	
		2 2.35e	-03 2.57e-	03 2.83e-0	03 3.10e-	03 3.39e-	03 3.73e-	03 3.01e-0	03 2.29e-	03	
		3 2.57e	-03 2.83e-	03 3.20e-0	03 3.57e-	03 4.02e-	03 4.55e-	03 3.74e-0	03 2.45e-	03	
		4 2.36e	-03 2.54e-	03 2.92e-0	03 3.19e-	03 3.58e-0	03 3.90e-	03 3.35e-0)3 2.29e-	03	
		5 2.62e	-03 2.89e-	03 3.28e-0	03 3.67e-	03 4.10e-	03 4.55e-	03 3.89e-0	2.48e-	03	
		6 2.67e	-03 2.90e-	03 3.25e-0	03 3.54e-	03 3.70e-	03 3.48e-	03 3.65e-0)3 2.46e-	03	
		$7 \overline{2.64e}$	-03 2.91e-	03 3.30e-0	03 3.69e-	03 4.12e-	03 4.56e-	$03 \overline{3.89e}$	$\overline{)3}$ 2.48e-	03	
		8 2.39e	-03 2.57e-	03 2.95e-0	03 3.22e-	03 3.60e-	03 3.92e-	03 3.35e-0	03 2.29e-	03	
		9 2.62e	-03 2.87e-	03 3.23e-0	03 3.60e-	03 4.04e-	03 4.56e-	03 3.74e-0	03 2.45e-	03	
		10 2.39e	-03 2.60e-	03 2.85e-0	03 3.12e-	03 3.40e-	03 3.74e-	03 3.01e-0	03 2.29e-	03	
		11 2.27e	-03 2.41e-	03 2.54e-0	03 2.63e-	03 2.64e-	03 2.49e-	03 2.16e-0)3 2.36e-	03	

50

TABLE 14. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 4.0$: Depth averaged turbulent viscosity. The value for the cells containing the turbines have been underlined

	downstream					strea	am wise	direction	. ~				
1	1.2358	1.5220	1.5697	1.6147	1.6542	1.6852	1.7111	1.7103	1.6598	1.4974	1.3647	1.3286	1.3461
2	1.2722	1.5365	1.5784	1.6180	1.6535	1.6835	1.7162	1.7406	1.7494	1.7325	1.5588	1.3332	1.3520
3	1.3419	1.6253	1.6703	1.7135	1.7534	1.7892	1.8340	1.8812	1.9274	1.9708	1.7654	1.4275	1.4481
4	1.2226	1.4720	1.5089	1.5440	1.5852	1.6145	1.6505	1.6851	1.7074	1.7030	1.5486	1.2633	1.2573
5	1.3666	1.6520	1.6958	1.7390	1.7774	1.8156	1.8620	1.8943	1.8633	1.6996	1.5876	1.4280	1.4498
6	1.4365	1.7065	1.7497	1.7928	1.8339	1.8697	1.9011	1.8686	1.5935	0.7393	0.4702	1.4758	1.4719
$\overline{7}$	1.4028	1.6967	1.7403	1.7831	1.8202	1.8579	1.9036	1.9349	1.9014	1.7230	1.6032	1.4439	1.4645
8	1.2754	1.5360	1.5718	1.6056	1.6455	1.6731	1.7068	1.7383	1.7564	1.7424	1.5748	1.2832	1.2748
9	1.4368	1.7414	1.7844	1.8247	1.8609	1.8923	1.9301	1.9682	2.0050	2.0344	1.8082	1.4608	1.4767
10	1.3658	1.6483	1.6876	1.7235	1.7546	1.7796	1.8045	1.8191	1.8174	1.7846	1.5940	1.3609	1.3750
11	1.3402	1.6464	1.6899	1.7298	1.7631	1.7874	1.8034	1.7900	1.7261	1.5448	1.4025	1.3581	1.3692
				S	stream w	ise direct	tion \leftarrow		inlet				
			1	1.3588	1.3573	1.3350	1.2624	1.1062	1.1011	_			
			2	1.3716	1.3868	1.3978	1.4039	1.2712	1.0790				
			3	1.4870	1.5160	1.5556	1.6012	1.4746	1.1930				
			4	1.3274	1.3330	1.3708	1.3797	1.2814	1.0543				
			5	1.4917	1.5129	1.5045	1.4556	1.3353	1.2098				
			6	1.5044	1.4591	1.2917	0.7898	0.3175	1.1692				
			7	1.5045	1.5238	1.5132	1.4614	1.3366	1.2098				
			8	1.3437	1.3466	1.3818	1.3870	1.2830	1.0543				
			9	1.5104	1.5344	1.5694	1.6100	1.4763	1.1930				
			10	1.3898	1.4006	1.4076	1.4093	1.2723	1.0790				
			11	1.3749	1.3676	1.3405	1.2642	1.1064	1.1011				

2.2.3. Tip speed ratio $\gamma = 5.5$. Figure 22 shows mosaic plots of the binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity. The bin containing the upstream hub is at (2.1,0.0) while the downstream hub is at (0.0,0.0) and it is easily identifiable in the velocity plot showing the expected velocity deficit associated with the flow passing the turbine face. Tables 15 to 17 present the binned mean values with the bin containing the turbine nacelle underlined.

FIGURE 22. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 5.5$: Mosaic plots showing binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity.

TABLE 15. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 5.5$: Depth averaged velocity magnitude. The value for the cells containing the turbines have been underlined

	downstream		stream wise direction \leftarrow										
1	0.4468	0.4513	0.4531	0.4554	0.4585	0.4622	0.4692	0.4806	0.4971	0.5267	0.5094	0.4627	0.4660
2	0.4410	0.4417	0.4420	0.4424	0.4429	0.4436	0.4452	0.4482	0.4527	0.4584	0.4587	0.4440	0.4449
3	0.4527	0.4507	0.4501	0.4492	0.4482	0.4470	0.4449	0.4419	0.4377	0.4260	0.4301	0.4475	0.4470
4	0.4377	0.4379	0.4377	0.4374	0.4369	0.4361	0.4346	0.4321	0.4279	0.4144	0.4133	0.4361	0.4365
5	0.4531	0.4480	0.4458	0.4429	0.4395	0.4351	0.4267	0.4129	0.3923	0.3594	0.3941	0.4363	0.4332
6	0.4522	0.4443	0.4409	0.4364	0.4307	0.4236	0.4101	0.3875	0.3529	0.3315	0.4260	0.4225	0.4177
7	0.4538	0.4488	0.4466	0.4438	0.4403	0.4360	0.4277	0.4139	0.3934	0.3605	0.3947	0.4367	0.4336
8	0.4396	0.4399	0.4397	0.4393	0.4388	0.4380	0.4364	0.4337	0.4296	0.4161	0.4145	0.4371	0.4374
9	0.4546	0.4524	0.4517	0.4508	0.4497	0.4485	0.4465	0.4434	0.4393	0.4274	0.4310	0.4482	0.4476
10	0.4435	0.4439	0.4441	0.4443	0.4448	0.4454	0.4469	0.4497	0.4542	0.4597	0.4597	0.4449	0.4456
11	0.4495	0.4530	0.4544	0.4565	0.4594	0.4629	0.4698	0.4810	0.4974	0.5269	0.5098	0.4632	0.4664
				s	stream w	ise direc	tion \leftarrow		inlet				
			1	0.4723	0.4805	0.4917	0.5117	0.5071	0.4528				
			2	0.4466	0.4488	0.4517	0.4556	0.4606	0.4435				
			3	0.4440	0.4420	0.4376	0.4313	0.4302	0.4498				
			4	0.4337	0.4330	0.4279	0.4244	0.4159	0.4413				
			5	0.4244	0.4136	0.3938	0.3733	0.3954	0.4475				
			6	0.4042	0.3859	0.3610	0.3294	0.4102	0.4442				
			7	0.4247	0.4138	0.3941	0.3735	0.3955	0.4475				
			8	0.4343	0.4335	0.4282	0.4246	0.4160	0.4413				
			9	0.4445	0.4425	0.4380	0.4315	0.4302	0.4498				
			10	0.4471	0.4492	0.4520	0.4557	0.4606	0.4435				
			11	0.4727	0.4808	0.4918	0.5118	0.5071	0.4528	_			

TABLE 16. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 5.5$: Depth averaged turbulent kinetic energy. The value for the cells containing the turbines have been underlined

(downstream					S	tream wis	e direction	\leftarrow			
1	1.76e-03	3.41e-	03 3	.81e-03	4.23e-03	4.66e-03	5.07e-03	5.58e-03	5.96e-03	5.88e-03	4.68e-03	3.62e-03
2	1.77e-03	3.44e	03 3	.85e-03	4.29e-03	4.76e-03	5.24e-03	5.95e-03	6.79e-03	7.53e-03	7.83e-03	5.57 e-03
3	1.88e-03	3.65e-	03 4	.09e-03	4.58e-03	5.11e-03	5.67e-03	6.55e-03	7.70e-03	8.90e-03	9.71e-03	6.87 e-03
4	1.78e-03	3.39e-	03 3	.79e-03	4.22e-03	4.72e-03	5.22e-03	6.00e-03	7.01e-03	7.97e-03	8.34e-03	6.07 e- 03
5	1.93e-03	3.70e-	03 4	.15e-03	4.65e-03	5.20e-03	5.79e-03	6.75e-03	8.03e-03	9.29e-03	9.98e-03	7.71e-03
6	1.93e-03	3.77e-	03 4	.23e-03	4.75e-03	5.31e-03	5.92e-03	6.88e-03	8.08e-03	8.93e-03	8.16e-03	7.20e-03
7	1.95e-03	3.75e-	03 4	.20e-03	4.71e-03	5.25e-03	5.85e-03	6.82e-03	8.11e-03	9.37 e-03	1.00e-02	7.72e-03
8	1.80e-03	3.46e	03 3	.86e-03	4.30e-03	4.80e-03	5.31e-03	6.10e-03	7.11e-03	8.06e-03	8.40e-03	6.10e-03
9	1.92e-03	3.76e-	03 4	.21e-03	4.71e-03	5.25e-03	5.81e-03	6.69e-03	7.83e-03	9.00e-03	9.78e-03	6.92 e- 03
10	1.81e-03	3.56e-	03 3	.97e-03	4.42e-03	4.90e-03	5.38e-03	6.09e-03	6.91e-03	7.62e-03	7.88e-03	5.63e-03
11	1.81e-03	3.54e	03 3	.95e-03	4.38e-03	4.81e-03	5.22e-03	5.73e-03	6.10e-03	5.99e-03	4.77e-03	3.69e-03
					strear	n wise dir	ection \leftarrow			in	let	
	-	1 3.4	1e-03	3.70e-	03 3.98e-	03 4.16e	-03 4.166	-03 3.71e	-03 2.43e-	03 2.37e-	03	
		2 3.5	4e-03	3.94e-	03 4.43e-	03 $4.95e$	-03 5.51ϵ	-03 6.17e	-03 4.33e-	03 2.31e-	03	
		3 3.8	6e-03	4.34e-	03 5.01e-	03 5.74e	-03 6.626	-03 7.68e	-03 5.46e-	03 2.48e-	03	
		4 3.5	3e-03	3.88e-	03 4.57e-	03 5.15e	-03 5.92 ϵ	-03 6.53e	-03 4.70e-	03 2.31e-	03	
		5 3.9	1e-03	4.43e-	03 5.17e-	03 6.01e	-03 6.996	-03 7.91e	-03 6.09e-	03 2.51e-	03	
		6 4.0	1e-03	4.47e-	03 5.21e-	03 5.98e	-03 6.656	-03 6.73e	-03 4.85e-	03 2.48e-	03	
		$7 \overline{3.9}$	4e-03	4.45e-	03 5.19e-	03 6.03e	-03 7.016	-03 7.92e	-03 $\overline{6.08e}$	$\overline{03}$ 2.51e-	03	
		8 3.5	6e-03	3.91e-	03 4.60e-	03 5.18e	-03 5.956	-03 6.54e	-03 4.69e-	03 2.31e-	03	
		9 3.9	1e-03	4.38e-	03 5.05e-	03 5.77e	-03 6.646	-03 7.68e	-03 5.45e-	03 2.48e-	03	
		10 3.5	8e-03	3.97e-	03 4.46e-	03 4.97e	-03 5.526	-03 6.17e	-03 4.33e-	03 2.31e-	03	
		11 3.4	5e-03	3.73e-	03 4.01e-	03 4.17e	-03 4.17ϵ	-03 3.71e	-03 2.43e-	03 2.37e-	03	

54

TABLE 17. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 5.5$: Depth averaged turbulent viscosity. The value for the cells containing the turbines have been underlined

	$\operatorname{downstream}$		stream wise direction \leftarrow										
1	1.5387	2.0169	2.0991	2.1807	2.2578	2.3263	2.4028	2.4477	2.4036	2.1253	1.8118	1.6778	1.7041
2	1.5975	2.0503	2.1241	2.1965	2.2650	2.3268	2.4009	2.4636	2.4903	2.4626	2.1535	1.6930	1.7222
3	1.6974	2.1730	2.2500	2.3261	2.3988	2.4661	2.5523	2.6404	2.7147	2.7944	2.4638	1.8177	1.8503
4	1.5341	1.9586	2.0230	2.0855	2.1564	2.2112	2.2816	2.3529	2.4007	2.3786	2.1342	1.6047	1.6007
5	1.7219	2.1904	2.2621	2.3332	2.3982	2.4649	2.5557	2.6484	2.6695	2.3652	2.2081	1.8197	1.8614
6	1.7931	2.2507	2.3209	2.3909	2.4601	2.5266	2.6131	2.6736	2.5153	1.2656	0.6569	1.8929	1.9135
7	1.7421	2.2211	2.2934	2.3648	2.4291	2.4957	2.5859	2.6778	2.6982	2.3881	2.2233	1.8322	1.8730
8	1.5634	2.0034	2.0683	2.1307	2.2012	2.2551	2.3238	2.3931	2.4386	2.4101	2.1564	1.6205	1.6145
9	1.7489	2.2536	2.3319	2.4081	2.4799	2.5453	2.6272	2.7086	2.7756	2.8453	2.5018	1.8456	1.8743
10	1.6478	2.1288	2.2035	2.2756	2.3425	2.4019	2.4708	2.5263	2.5449	2.5056	2.1859	1.7166	1.7419
11	1.5939	2.1028	2.1855	2.2664	2.3419	2.4078	2.4791	2.5159	2.4630	2.1705	1.8470	1.7040	1.7255
				s	stream w	ise direc	tion \leftarrow		inlet				
			1	1.7228	1.7176	1.6761	1.5356	1.1852	1.1040				
			2	1.7525	1.7736	1.7846	1.7807	1.5098	1.0850				
			3	1.9093	1.9517	2.0061	2.0661	1.7924	1.2010				
			4	1.7044	1.7187	1.7779	1.7775	1.5280	1.0610				
			5	1.9428	2.0086	2.0544	1.9644	1.6499	1.2172				
			6	2.0124	2.0537	1.9936	1.4488	0.4136	1.1729				
			7	1.9529	2.0172	2.0614	1.9689	1.6501	1.2172				
			8	1.7173	1.7296	1.7867	1.7831	1.5285	1.0610				
			9	1.9288	1.9668	2.0171	2.0727	1.7930	1.2010				
			10	1.7679	1.7853	1.7927	1.7849	1.5101	1.0850				
			11	1.7387	1.7282	1.6820	1.5377	1.1853	1.1040				

2.2.4. Tip speed ratio $\gamma = 6.0$. Figure 23 shows mosaic plots of the binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity. The bin containing the upstream hub is at (2.1,0.0) while the downstream hub is at (0.0,0.0) and it is easily identifiable in the velocity plot showing the expected velocity deficit associated with the flow passing the turbine face. Tables 18 to 20 present the binned mean values with the bin containing the turbine nacelle underlined.

FIGURE 23. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 6.0$: Mosaic plots showing binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity.

TABLE 18. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 6.0$: Depth averaged velocity magnitude. The value for the cells containing the turbines have been underlined

	downstream		stream wise direction \leftarrow										
1	0.4481	0.4541	0.4560	0.4583	0.4608	0.4637	0.4684	0.4750	0.4828	0.4924	0.4800	0.4594	0.4614
2	0.4402	0.4416	0.4421	0.4427	0.4434	0.4442	0.4455	0.4473	0.4493	0.4530	0.4543	0.4440	0.4447
3	0.4530	0.4505	0.4499	0.4492	0.4486	0.4478	0.4468	0.4453	0.4434	0.4404	0.4466	0.4495	0.4494
4	0.4354	0.4358	0.4357	0.4354	0.4350	0.4344	0.4333	0.4315	0.4290	0.4235	0.4274	0.4366	0.4369
5	0.4527	0.4451	0.4426	0.4397	0.4367	0.4330	0.4270	0.4184	0.4084	0.3985	0.4189	0.4396	0.4377
6	0.4509	0.4389	0.4351	0.4304	0.4250	0.4189	0.4083	0.3926	0.3750	0.3664	0.3909	0.4267	0.4231
7	0.4535	0.4459	0.4434	0.4405	0.4374	0.4338	0.4277	0.4192	0.4092	0.3992	0.4195	0.4398	0.4378
8	0.4375	0.4376	0.4374	0.4371	0.4365	0.4358	0.4346	0.4328	0.4302	0.4244	0.4282	0.4370	0.4372
9	0.4550	0.4521	0.4514	0.4507	0.4500	0.4492	0.4481	0.4465	0.4444	0.4413	0.4474	0.4498	0.4496
10	0.4429	0.4437	0.4440	0.4445	0.4450	0.4457	0.4468	0.4484	0.4503	0.4537	0.4550	0.4444	0.4449
11	0.4508	0.4557	0.4573	0.4594	0.4618	0.4645	0.4691	0.4754	0.4831	0.4927	0.4804	0.4597	0.4614
				s	tream w	ise direc	tion \leftarrow		inlet				
			1	0.4646	0.4684	0.4732	0.4803	0.4731	0.4499	_			
			2	0.4458	0.4469	0.4481	0.4499	0.4541	0.4428				
			3	0.4478	0.4471	0.4451	0.4433	0.4482	0.4505				
			4	0.4359	0.4355	0.4330	0.4317	0.4323	0.4417				
			5	0.4323	0.4265	0.4168	0.4107	0.4252	0.4497				
			6	0.4144	0.4038	0.3918	0.3810	0.3945	0.4461				
			7	0.4324	0.4266	0.4168	0.4107	0.4251	0.4497				
			8	0.4361	0.4357	0.4331	0.4317	0.4322	0.4417				
			9	0.4480	0.4472	0.4452	0.4433	0.4482	0.4505				
			10	0.4459	0.4469	0.4481	0.4498	0.4541	0.4427				
			11	0.4646	0.4684	0.4731	0.4803	0.4731	0.4498				

TABLE 19. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 6.0$: Depth averaged turbulent kinetic energy. The value for the cells containing the turbines have been underlined

	downstream				\mathbf{st}	ream wise	direction ·	\leftarrow			
1	1.05e-03	1.69e-03	1.81e-03	1.92e-03	2.02e-03	2.09e-03	2.15e-03	2.14e-03	2.03e-03	1.80e-03	1.71e-03
2	1.05e-03	1.74e-03	1.88e-03	2.02e-03	2.16e-03	2.29e-03	2.47e-03	2.64 e- 03	2.77e-03	2.68e-03	2.12e-03
3	1.11e-03	1.85e-03	2.01e-03	2.18e-03	2.36e-03	2.53e-03	2.78e-03	3.06e-03	3.29e-03	3.26e-03	2.49e-03
4	1.08e-03	1.74e-03	1.88e-03	2.03e-03	2.19e-03	2.34e-03	2.54e-03	2.76e-03	2.91e-03	2.83e-03	2.25e-03
5	1.14e-03	1.88e-03	2.05e-03	2.23e-03	2.41e-03	2.60e-03	2.85e-03	3.11e-03	3.25e-03	3.17e-03	2.64 e- 03
6	1.14e-03	1.93e-03	2.10e-03	2.28e-03	2.47e-03	2.63e-03	2.83e-03	2.92e-03	2.66e-03	2.41e-03	3.55e-03
$\overline{7}$	1.14e-03	1.90e-03	2.07e-03	2.25e-03	2.43e-03	2.62e-03	2.88e-03	3.13e-03	3.26e-03	3.18e-03	2.64 e- 03
8	1.09e-03	1.76e-03	1.90e-03	2.05e-03	2.21e-03	2.36e-03	2.57e-03	2.78e-03	2.93e-03	2.83e-03	2.25e-03
9	1.13e-03	1.89e-03	2.05e-03	2.22e-03	2.39e-03	2.57 e- 03	2.81e-03	3.08e-03	3.30e-03	3.26e-03	2.49e-03
10	1.08e-03	1.78e-03	1.92e-03	2.06e-03	2.19e-03	2.32e-03	2.49e-03	2.66e-03	2.77e-03	2.68e-03	2.13e-03
11	1.07e-03	1.73e-03	1.84e-03	1.95e-03	2.05e-03	2.12e-03	2.17e-03	2.16e-03	2.05e-03	1.81e-03	1.72e-03
				stream	n wise dire	ection \leftarrow			inl	et	
	-	1 1.74e	-03 1.84e-	03 1.94e-	03 2.01e-	03 2.06e-	03 2.07e-	03 2.09e-0	03 2.35e-	03	
		2 1.82e	-03 1.96e-	03 2.13e-	03 2.29e-	03 2.47e-0	03 2.65e-	03 2.38e-0	3 2.29e-	03	
		3 1.98e	-03 2.15e-	03 2.38e-	03 2.60e-	03 2.85e-0	03 3.10e-	03 2.72e-0	3 2.44e-	03	
		4 1.82e	-03 1.93e-	03 2.17e-0	03 2.33e-	03 2.55e-0	03 2.71e-	03 2.47e-0	3 2.28e-1	03	
		5 1.99e	-03 2.16e-	03 2.40e-	03 2.61e-	03 2.82e-0	03 3.04e-	03 2.90e-0	3 2.48e-0	03	
		6 2.02e	-03 2 15e-	03 2.33e-	03 2 43e-	03 2 42e-	03 2.23e-	03 3 36e-0	3 246e	03	
		7 2.00e	-03 2.17e-	03 2.40e-0	03 2.62e-	03 2.83e-	03 3.04e-	03 2.90e-0	$\frac{3}{2.48e}$	03	
		8 1.83e	-03 1.94e-	03 2.18e-0	03 2.34e-	03 2.56e-0	03 2.72e-	03 2.47e-0	3 2.28e-1	03	
		9 2.00e	-03 2.16e-	03 2.39e-0	03 2.61e-	03 2.86e-0	03 3.11e-	03 2.73e-0	3 2.44e-0	03	
		10 1.84e	-03 1.97e-	03 2.14e-0	03 2.30e-	03 2.47e-0	0.110 - 0.110 - 0.110	03 2.38e-0	3 2.29e-	03	
		11 1.75e	-03 1.85e-	03 1.94e-	03 2.02e-	$03 2.07e^{-1}$	$03 2.07e^{-1}$	03 2.09e-0	2.35e-0	03	

58

TABLE 20. Two turbines in series tested in the Manchester basin at a tip speed ratio of $\gamma = 6.0$: Depth averaged turbulent viscosity. The value for the cells containing the turbines have been underlined

		downstream	stream wise direction \leftarrow											
-	1	1.1253	1.3566	1.3900	1.4198	1.4439	1.4604	1.4677	1.4508	1.3973	1.2758	1.2080	1.1934	1.2059
	2	1.1538	1.3634	1.3931	1.4200	1.4431	1.4619	1.4814	1.4953	1.4988	1.4650	1.3205	1.1982	1.2134
	3	1.2077	1.4316	1.4637	1.4937	1.5209	1.5452	1.5766	1.6125	1.6479	1.6493	1.4671	1.2785	1.2961
	4	1.0904	1.2814	1.3071	1.3308	1.3593	1.3779	1.3999	1.4199	1.4305	1.4059	1.2846	1.1253	1.1198
	5	1.2053	1.4226	1.4528	1.4809	1.5031	1.5235	1.5397	1.5284	1.4609	1.3200	1.2843	1.2554	1.2670
	6	1.2654	1.4609	1.4879	1.5116	1.5288	1.5347	1.5038	1.3511	0.9378	0.4597	0.3875	1.2714	1.2481
	7	1.2210	1.4399	1.4696	1.4974	1.5188	1.5387	1.5539	1.5406	1.4689	1.3218	1.2858	1.2613	1.2725
	8	1.1132	1.3054	1.3302	1.3530	1.3805	1.3981	1.4187	1.4367	1.4448	1.4158	1.2902	1.1327	1.1262
	9	1.2488	1.4748	1.5051	1.5330	1.5579	1.5797	1.6075	1.6391	1.6709	1.6670	1.4785	1.2904	1.3064
	10	1.1939	1.4041	1.4317	1.4563	1.4769	1.4931	1.5088	1.5184	1.5182	1.4795	1.3313	1.2083	1.2219
	11	1.1700	1.4012	1.4320	1.4589	1.4795	1.4924	1.4952	1.4732	1.4155	1.2898	1.2202	1.2031	1.2134
-					s	tream w	ise direc	tion \leftarrow		inlet				
				1	1.2144	1.2129	1.1979	1.1531	1.0823	1.1004	_			
				2	1.2300	1.2445	1.2576	1.2655	1.1637	1.0774				
				3	1.3292	1.3553	1.3907	1.4260	1.3198	1.1908				
				4	1.1755	1.1789	1.2080	1.2155	1.1526	1.0525				
				5	1.2887	1.2861	1.2525	1.2179	1.1757	1.2078				
				6	1.2298	1.1148	0.8803	0.5062	0.2851	1.1683				
				7	1.2935	1.2904	1.2562	1.2208	1.1768	1.2078				
				8	1.1817	1.1841	1.2124	1.2186	1.1539	1.0525				
				9	1.3377	1.3622	1.3960	1.4297	1.3214	1.1908				
				10	1.2369	1.2498	1.2615	1.2680	1.1648	1.0775				
				_11	1.2196	1.2164	1.1999	1.1541	1.0824	1.1004	_			

FIGURE 24. Detail from the ICEM mesh generator showing the crosssectional grid (dark blue) and the mesh regions for the neighbourhood of the actuator disks (light blue), the stream-wise refinement zones for the two rows of turbines can also be seen as can the mesh stretching towards the downstream and westward boundaries.

3. Staggered array of turbines

To demonstrate the application of the model to arrays of turbines two cases have been considered. Both were modelled experimentally by the University of Manchester as test 19 (turbines in series) and test 20 (staggered turbines). In this, the second, case a small array of turbines has been simulated by imposing a symmetry boundary conditions at the east boundary of the Code_Saturne simulation, while extending the domain westwards away from the array to allow the flow passing the array to develop. This section presents results from Manchester test 20, while section 2 considers Manchester test 19, which comprised an infinitely wide array of turbines in series.

3.1. Computational set-up. The meshing strategy employed (again using ICEM) treats each turbine in a similar to that used in the previous cases, but requires a more complex blocking arrangement to account for the staggered turbines, see Figure 24. Each individual turbine is meshed using cylindrical O-grid to discretise its rotor plane, as before, this O-grid has 15 cells in the radial direction and 24 cells in the circumferential direction. Mesh stretching has been used to refine the grid at the edge of the rotor so the shear between the free stream flow and the fluid which has passed through the actuator disk is sufficiently resolved. Once again, only the nacelles have been included in the computation and there are no support structures. In meshing the nacelle a 6×6 H-grid region has been used at the centre of the O-grid, though this does not form part of the actuator disk. The computational domain extends from 30 diameters downstream of the downstream turbine and 3 diameters upstream of the upstream turbine. Figure 25

FIGURE 25. Schematic diagram of the arrangement of the turbines and boundary conditions for the staggered array of turbines.

shows a schematic of the problem set-up. Because a symmetry condition is imposed on the centreline only half of the centre upstream rotor is discretised, although the rotating near wake behind the turbine does not have mirror symmetry this approximation has been made to reduce the computational overhead associated with the computation by halving the mesh size.

The blade geometry used in these tests is shown in Table 8, in the previous section. The required tables of for coefficients of lift, C_L , and drag C_D , against angle of attack, γ , for the GOE804 airfoil were obtained from the University of Manchester are can be found in the file Goe804.txt, the lift and drag coefficients for the airfoil are plotted in Figure 12. usinv.f90 and ustsns.f90 were modified to create an actuator disk located on the face of each rotor. The source code for the user routines, together with the files blade.txt, circle.txt and Geo804.txt are included on the accompanying CD in the Staggered directory.

For all four tip-speed ratios ($\gamma = 3.5, 4.0, 4.5, \text{ and } 5.5$) the left and right walls of the computational domain were specified as symmetry conditions (with the zero normal flow condition imposed) to simulate a small array of turbines in the centre of an infinitely wide farm. The top of the computational domain was also set as a symmetry condition to mimic a free surface with minimal deformation, while the lower boundary was set

FIGURE 26. Predicted and measure mean velocity profiles at the location of the upstream, centre, rotor in the Manchester tests of an array of turbines in a staggered arrangement, in an empty channel.

as a no-slip wall, with a roughness of $\epsilon = 6 \times 10^{-6}$. The upstream boundary condition (located 3 diameters upstream of the rotor face) has a velocity profile designed to match that of the Manchester experiments with 10% turbulence intensity (Figure ??). The **Code_Saturne** computations were run using the transient solver with a reference time step of 0.006 seconds, an adaptive time step was used with a maximum Courant number of 1.0. Convergence was accelerated by using local time-stepping and the solution was run for 3000 iterations. In this case, as for the array in series, the $k - \epsilon$ turbulence model was used as it is able to cope with rough walls. Full details of the setup are to be found in the **Code_Saturne** setup file, D5_CASE.xml which is to be found on the accompanying CD, also in the **Staggered** directory.

Figure 30 shows iso-surfaces of velocity magnitude in the lower half of the water column from the simulations at a tip speed ratio of $\gamma = 4.0$. The interaction of the wake from the first row of turbines with the second can clearly be seen as can the development and subsequent merger of the wakes from the two downstream turbines.

TABLE 21. Coefficients of thrust and power for the turbines in the staggered array case at a tip speed ratio of $\gamma = 4.5$.

Turbine position	Turbine No.	C_T	C_P
upstream row, centre	1	0.856	0.392
upstream row, outer	2	0.840	0.380
downstream row, inner	3	0.778	0.316
downstream row, outer	4	0.824	0.356

3.2. Comparison with experimental data. Figure 27 shows CT as a function of local tip-speed ratio for the turbines in the staggered array, compared with the experimental measurements from the Manchester tests. The black symbols refer to the experimental results and the coloured circles to the simulation, it is not clear why the tip speed ratio of the downstream turbines is lower than for the upstream in the Manchester tests as the rotor speed is not recorded, in the simulations the tip speed ratio is held constant ($\gamma = 4.5$) for all rotors, the agreement between the simulation and the experiments for the upstream turbines is excellent. Table 21 shows the thrust and drag coefficient from the simulation. Stream-wise velocity distributions through the centres of the turbines are shown in figure 28. The velocity approaching the outer turbine in the downstream row accelerates as it passes the front turbine row, and the flow on the centreline of the array (on the symmetry plane) is accelerated downstream of the second row as it is squeezed by the wakes of the downstream turbines. It should be noted that the application of a symmetry boundary condition on the centre of the array enhances mixing in the down stream turbine wakes as the wake sees a contra-rotating turbine on the other side of the symmetry plane. At the tip speed ratio of $\gamma = 4.5$ the assumption of symmetry does not seem to have a significant effect on the centre wake but this is not necessarily true at higher ratios.

Figure 29 compares the cross stream velocity deficit distribution two diameters down stream from the first row of turbines (five diameters downstream of the inlet). This location coincides with the minimum velocity in the wake of the upstream turbines (Figure 28). The deficit velocity distribution shows the expected trend but the magnitude is about half that measured in the experiment. One possible cause of this is the definition of the reference velocity used to calculate the velocity deficit, in the simulation results the velocity in the flow passing the turbine array has been used (to ensure $U_{defnor} = 0$ at the edge of the array, but this velocity is higher than the free stream velocity in front of the array. It may be possible that the imposition of a symmetry plane at the centre of the array further exacerbates this. A more complete comparison awaits a more detailed discussion with the Manchester team and more detailed experimental data. In general, the it seems reasonable to conclude that the methodology is giving a reasonable simulation of the turbine array. D5b will include a more complete analysis (once data from Manchester is available) and tests which do not include a symmetry plane at the centre of the array.

3.3. Depth averaged results. Figure 30 shows iso-surfaces of velocity magnitude in the lower half of the water column from the Reynolds averaged Navier-Stokes simulations of a staggered arrangement of two rows of turbines at a tip speed ratio of $\gamma = 4.0$. For all the cases presented the computational domain in the neighbourhood of the two turbines has been binned using 25 bins in the stream wise direction from 11 diameters upstream of the downstream turbine (z = -3.0m) to 8 diameters downstream of the same turbine (z = 2.0m). 13 bins have been used in the cross flow direction, with the domain restricted to six turbine diameters away from the centre turbine. The origin of the computational domain is located at the centre of the front face of the downstream turbine and orientated so the flow direction is from right to left in the mosaic plots. Because the upper boundary of the discretised region is a symmetry plane only half the upstream rotor is represented.

In three of the four cases, $\gamma = 3.5$, 4.0, and 4.5, the development of an accelerated plume of fluid passing the turbine array can be seen. This farm wake persists down stream to beyond the end of the computational domain, and it is likely that it's full development can only be see in in basin scale models. Furthermore, the depth averaged results show that the wakes of the front row of turbines are completely truncated by passing the second row. Some degree of flow acceleration can also be observed between the turbines in the second row, but this effect is quickly lost as the turbine wakes merge. Velocity shear associated with these jet leads to the generation of high levels of turbulence in the inter-turbine region and this leads to faster merger of the wakes due to enhanced mixing. Although the flow passing the array is accelerated eddy dissipation means the turbulence intensity in the flow quickly reduces.

The only anomaly in this behaviour is the highest tip speed ratio, where the effects of the centre-line turbine seem to dominate. One possible explanation for this is that the assumption of mirror symmetry through the centre plane of this turbine is incorrect, and the apparent interaction of two contra-rotating flows in this region is dominating the flow solution. The only way of testing this would be to perform a, computationally demanding, simulation of the entire array.

3.3.1. Tip speed ratio $\gamma = 3.5$. Figure 31 shows mosaic plots of the binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity. The bin containing the upstream hubs are at (2.1,0.0) while the downstream hubs are at (0.0,0.0) and it is easily identifiable in the velocity plot showing the expected velocity deficit associated with the flow passing the turbine face. It should be noted that the centre upstream hub lies on the symmetry plane and so only half the rotor plane is used in the simulation. Tables 22 to 24 present the binned mean values with the bin containing the turbine nacelle underlined.

FIGURE 27. Tip speed ratio vs thrust coefficient for the turbines in a staggered array for both the Manchester experiments and the present simulations.

FIGURE 28. Streamwise velocity distributions through the centres of four of the turbines in the staggered array simulation. Turbine 1 is upstream on the symmetry plane, turbine 2 is also upstream, turbines 3 and 4 are downstream with turbine 3 nearest the symmetry plane and turbine 4 on the outside of the array.

FIGURE 29. Crossflow velocity deficit distribution two diameters down stream from the front turbine row, simulated results are shown in red with experimental measurements from Manchester shown in black.

FIGURE 30. Iso-surfaces of velocity magnitude in the lower half of the water column from the Reynolds averaged Navier-Stokes simulations of a staggered arrangement of two rows of turbines at a tip speed ratio of $\gamma = 4.0$.

FIGURE 31. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 3.5$: Mosaic plots showing binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity.

	down	stream	stream wise direction \leftarrow											
1		0.4077	0.4100	0.4103	0.4106	0.4109	0.4113	0.4118	0.4123	0.4129	0.4138	0.4148	0.4160	0.4172
2		0.4044	0.3951	0.3933	0.3912	0.3888	0.3858	0.3823	0.3780	0.3726	0.3658	0.3570	0.3463	0.3374
3		0.3994	0.3960	0.3955	0.3949	0.3943	0.3936	0.3928	0.3919	0.3909	0.3896	0.3881	0.3860	0.3836
1		0.4079	0.4084	0.4089	0.4095	0.4103	0.4114	0.4128	0.4146	0.4169	0.4200	0.4241	0.4296	0.4363
5		0.4146	0.4094	0.4089	0.4082	0.4074	0.4066	0.4056	0.4044	0.4030	0.4013	0.3991	0.3963	0.3931
5		0.4229	0.4105	0.4083	0.4058	0.4028	0.3993	0.3950	0.3900	0.3838	0.3762	0.3668	0.3560	0.3483
7		0.4403	0.4388	0.4388	0.4387	0.4386	0.4385	0.4385	0.4387	0.4390	0.4400	0.4412	0.4435	0.4466
3		0.4591	0.4630	0.4637	0.4645	0.4653	0.4662	0.4674	0.4688	0.4704	0.4726	0.4750	0.4777	0.4799
)		0.4714	0.4750	0.4754	0.4757	0.4761	0.4764	0.4768	0.4768	0.4771	0.4778	0.4780	0.4780	0.4777
10		0.4757	0.4773	0.4774	0.4774	0.4774	0.4774	0.4774	0.4774	0.4773	0.4763	0.4761	0.4758	0.4750
11		0.4735	0.4743	0.4743	0.4742	0.4742	0.4742	0.4741	0.4741	0.4739	0.4737	0.4735	0.4729	0.4719
12		0.4725	0.4730	0.4730	0.4729	0.4729	0.4728	0.4726	0.4725	0.4723	0.4720	0.4716	0.4708	0.4697
13		0.4701	0.4700	0.4699	0.4698	0.4696	0.4694	0.4691	0.4687	0.4682	0.4676	0.4669	0.4658	0.4647
		stream wise direction \leftarrow inl												
	1	0.4178	0.4189	0.4208	0.4241	0.4052	0.3573	0.3895	0.4015	0.4352	0.4405	0.4448	0.4433	_
	2	0.3373	0.3424	0.4057	0.4321	0.4394	0.4400	0.4527	0.4495	0.4415	0.4442	0.4469	0.4458	
	3	0.3801	0.3856	0.4054	0.4201	0.3760	0.3515	0.3680	0.4063	0.4392	0.4458	0.4477	0.4475	
	4	0.4450	0.4462	0.4245	0.4179	0.3935	0.3815	0.3905	0.4146	0.4412	0.4451	0.4475	0.4445	
	5	0.3895	0.3979	0.4181	0.4341	0.4519	0.4568	0.4641	0.4587	0.4483	0.4472	0.4481	0.4478	
	6	0.3512	0.3591	0.4248	0.4529	0.4599	0.4667	0.4667	0.4600	0.4518	0.4508	0.4504	0.4501	
									0.2000	0.1010				
	7	0.4518	0.4626	0.4579	0.4604	0.4620	0.4634	0.4619	0.4579	0.4527	0.4506	0.4500	0.4499	
	$7 \\ 8$	$0.4518 \\ 0.4811$	$0.4626 \\ 0.4760$	$0.4579 \\ 0.4694$	$0.4604 \\ 0.4636$	$0.4620 \\ 0.4620$	$0.4634 \\ 0.4612$	$0.4619 \\ 0.4593$	$0.4579 \\ 0.4565$	0.4527 0.4533	$0.4506 \\ 0.4515$	$0.4500 \\ 0.4505$	$0.4499 \\ 0.4500$	
	$7 \\ 8 \\ 9$	$0.4518 \\ 0.4811 \\ 0.4765$	$\begin{array}{c} \overline{0.4626} \\ 0.4760 \\ 0.4720 \end{array}$	0.4579 0.4694 0.4687	$0.4604 \\ 0.4636 \\ 0.4632$	$0.4620 \\ 0.4620 \\ 0.4612$	$0.4634 \\ 0.4612 \\ 0.4598$	$\begin{array}{c} 0.4619 \\ 0.4593 \\ 0.4579 \end{array}$	$\begin{array}{c} 0.4579 \\ 0.4565 \\ 0.4556 \end{array}$	$\begin{array}{c} 0.4527 \\ 0.4533 \\ 0.4527 \end{array}$	$0.4506 \\ 0.4515 \\ 0.4510$	$0.4500 \\ 0.4505 \\ 0.4502$	$0.4499 \\ 0.4500 \\ 0.4499$	
	7 8 9 10	$\begin{array}{c} 0.4518 \\ 0.4811 \\ 0.4765 \\ 0.4725 \end{array}$	$\begin{array}{c} \overline{0.4626} \\ 0.4760 \\ 0.4720 \\ 0.4688 \end{array}$	$\begin{array}{c} 0.4579 \\ 0.4694 \\ 0.4687 \\ 0.4665 \end{array}$	$\begin{array}{c} 0.4604 \\ 0.4636 \\ 0.4632 \\ 0.4623 \end{array}$	$\begin{array}{c} 0.4620 \\ 0.4620 \\ 0.4612 \\ 0.4604 \end{array}$	$\begin{array}{c} 0.4634 \\ 0.4612 \\ 0.4598 \\ 0.4585 \end{array}$	$\begin{array}{c} 0.4619 \\ 0.4593 \\ 0.4579 \\ 0.4566 \end{array}$	$\begin{array}{c} 0.4579 \\ 0.4565 \\ 0.4556 \\ 0.4547 \end{array}$	$\begin{array}{c} 0.4527\\ 0.4533\\ 0.4527\\ 0.4524\end{array}$	$\begin{array}{c} 0.4506 \\ 0.4515 \\ 0.4510 \\ 0.4509 \end{array}$	$\begin{array}{c} 0.4500 \\ 0.4505 \\ 0.4502 \\ 0.4501 \end{array}$	$\begin{array}{c} 0.4499 \\ 0.4500 \\ 0.4499 \\ 0.4497 \end{array}$	
	$7 \\ 8 \\ 9 \\ 10 \\ 11$	$\begin{array}{c} 0.4518 \\ 0.4811 \\ 0.4765 \\ 0.4725 \\ 0.4703 \end{array}$	$\begin{array}{c} \overline{0.4626} \\ 0.4760 \\ 0.4720 \\ 0.4688 \\ 0.4671 \end{array}$	$\begin{array}{c} 0.4579 \\ 0.4694 \\ 0.4687 \\ 0.4665 \\ 0.4653 \end{array}$	$\begin{array}{c} 0.4604 \\ 0.4636 \\ 0.4632 \\ 0.4623 \\ 0.4620 \end{array}$	$\begin{array}{c} 0.4620 \\ 0.4620 \\ 0.4612 \\ 0.4604 \\ 0.4534 \end{array}$	$\begin{array}{c} 0.4634 \\ 0.4612 \\ 0.4598 \\ 0.4585 \\ 0.4521 \end{array}$	$\begin{array}{c} 0.4619 \\ 0.4593 \\ 0.4579 \\ 0.4566 \\ 0.4507 \end{array}$	$\begin{array}{c} 0.4579\\ 0.4565\\ 0.4556\\ 0.4547\\ 0.4496\end{array}$	$\begin{array}{c} 0.4527\\ 0.4533\\ 0.4527\\ 0.4524\\ 0.4483\end{array}$	$\begin{array}{c} 0.4506 \\ 0.4515 \\ 0.4510 \\ 0.4509 \\ 0.4478 \end{array}$	$\begin{array}{c} 0.4500 \\ 0.4505 \\ 0.4502 \\ 0.4501 \\ 0.4489 \end{array}$	$\begin{array}{c} 0.4499 \\ 0.4500 \\ 0.4499 \\ 0.4497 \\ 0.4498 \end{array}$	
	$7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12$	$\begin{array}{c} 0.4518 \\ 0.4811 \\ 0.4765 \\ 0.4725 \\ 0.4703 \\ 0.4681 \end{array}$	$\begin{array}{c} \overline{0.4626} \\ 0.4760 \\ 0.4720 \\ 0.4688 \\ 0.4671 \\ 0.4654 \end{array}$	$\begin{array}{c} 0.4579 \\ 0.4694 \\ 0.4687 \\ 0.4665 \\ 0.4653 \\ 0.4639 \end{array}$	$\begin{array}{c} 0.4604 \\ 0.4636 \\ 0.4632 \\ 0.4623 \\ 0.4620 \\ 0.4608 \end{array}$	$\begin{array}{c} 0.4620 \\ 0.4620 \\ 0.4612 \\ 0.4604 \\ 0.4534 \\ 0.4600 \end{array}$	$\begin{array}{c} 0.4634 \\ 0.4612 \\ 0.4598 \\ 0.4585 \\ 0.4521 \\ 0.4584 \end{array}$	$\begin{array}{c} 0.4619\\ 0.4593\\ 0.4579\\ 0.4566\\ 0.4507\\ 0.4564\end{array}$	$\begin{array}{c} 0.4579\\ 0.4565\\ 0.4556\\ 0.4547\\ 0.4496\\ 0.4547\end{array}$	$\begin{array}{c} 0.4527\\ 0.4533\\ 0.4527\\ 0.4524\\ 0.4483\\ 0.4527\end{array}$	$\begin{array}{c} 0.4506 \\ 0.4515 \\ 0.4510 \\ 0.4509 \\ 0.4478 \\ 0.4514 \end{array}$	$\begin{array}{c} 0.4500 \\ 0.4505 \\ 0.4502 \\ 0.4501 \\ 0.4489 \\ 0.4506 \end{array}$	$\begin{array}{c} 0.4499 \\ 0.4500 \\ 0.4499 \\ 0.4497 \\ 0.4498 \\ 0.4501 \end{array}$	

TABLE 22. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 3.5$: Depth averaged velocity magnitude. The value for the cells containing the turbines have been underlined

	downstr	ream					st	tream wise	direction \cdot	\leftarrow				
1	9.90)e-04	1.65e-03	1.75e-03	1.85e-03	1.97e-03	2.09e-03	2.23e-03	2.38e-03	2.54e-03	2.72e-03	2.92e-03	3.12e-03	3.32e-03
2	1.09	9e-03 1	1.89e-03	2.02e-03	2.16e-03	2.31e-03	2.49e-03	2.69e-03	2.90e-03	3.14e-03	3.38e-03	3.60e-03	3.75e-03	3.76e-03
3	1.06	6e-03	1.81e-03	1.93e-03	2.05e-03	2.20e-03	2.36e-03	2.54e-03	2.74e-03	2.96e-03	3.21e-03	3.49e-03	3.78e-03	4.07 e- 03
4	1.03	Be-03	1.73e-03	1.83e-03	1.94e-03	2.06e-03	2.18e-03	2.30e-03	2.43e-03	2.56e-03	2.68e-03	2.79e-03	2.86e-03	2.88e-03
5	1.07	7e-03	1.76e-03	1.87e-03	1.98e-03	2.11e-03	2.26e-03	2.42e-03	2.61e-03	2.81e-03	3.04e-03	3.29e-03	3.55e-03	3.78e-03
6	1.14	le-03 1	1.87e-03	1.99e-03	2.11e-03	2.25e-03	2.41e-03	2.58e-03	2.76e-03	2.95e-03	3.13e-03	3.28e-03	3.34e-03	3.27e-03
7	1.06	6e-03	1.63e-03	1.71e-03	1.80e-03	1.89e-03	1.99e-03	2.10e-03	2.21e-03	2.33e-03	2.44e-03	2.54e-03	2.61e-03	2.64e-03
8	8.94	le-04	1.25e-03	1.28e-03	1.31e-03	1.35e-03	1.38e-03	1.41e-03	1.44e-03	1.46e-03	1.46e-03	1.46e-03	1.45e-03	1.44e-03
9	6.90)e-04 8	8.69e-04	8.90e-04	9.13e-04	9.38e-04	9.64e-04	9.93e-04	1.01e-03	1.05e-03	1.09e-03	1.14e-03	1.19e-03	1.25e-03
10	6.12	2e-04 8	8.24e-04	8.50e-04	8.79e-04	9.09e-04	9.43e-04	9.79e-04	1.02e-03	1.06e-03	1.09e-03	1.15e-03	1.20e-03	1.26e-03
11	5.95	5e-04 8	8.00e-04	8.26e-04	8.54e-04	8.84e-04	9.17e-04	9.53e-04	9.91e-04	1.03e-03	1.08e-03	1.13e-03	1.18e-03	1.24e-03
12	5.93	Be-04	7.99e-04	8.25e-04	8.54e-04	8.84e-04	9.17e-04	9.52e-04	9.90e-04	1.03e-03	1.08e-03	1.13e-03	1.18e-03	1.24e-03
13	5.92	2e-04	7.97e-04	8.23e-04	8.51e-04	8.81e-04	9.14e-04	9.49e-04	9.88e-04	1.03e-03	1.07e-03	1.12e-03	1.18e-03	1.24e-03
						stream	ı wise dire	$\text{ction} \leftarrow$					in	let
	1 3	3.50e-03	3 3.26e-0)3 2.80e-0	3 2.85e-0)3 3.32e-(2.97e-	<u>03</u> 3.05e-	03 3.55e-	03 2.25e-0)3 2.43e-	03 2.67e-	03 2.79e-	03
	2 3	3.62e-03	3 <u>4.28e-0</u>	<u>)3</u> 3.71e-0	03 2.49e-0	03 2.70e-0	3.07e-	03 2.70e-	03 2.33e-	03 2.23e-0)3 2.41e-	03 2.65e-	03 2.79e-	03
	3 4	4.29e-03	3 3.74e-0	03 2.71e-0	3 2.53e-0)3 3.27e-(33 3.15e-	<u>03</u> 3.25e-	03 3.24e-	03 2.27e-0	03 2.46e-	03 2.68e-	03 2.83e-	03
	4 2	2.80e-03	3 2.53e-0	2.43e-0	3 2.55e-0)3 3.39e-()3 3.73e-	03 3.60e-0	03 2.81e-	03 2.26e-0	2.43e-0	03 2.68e-	03 2.78e-	03
	5 - 3	3.93e-03	3 3.40e-0)3 2.41e-0	3 2.22e-0	03 2.06e-0	2.24e-	03 2.13e-0	03 2.14e-	03 2.25e-0	2.41e-0	03 2.65e-	03 2.82e-	03
	6 3	3.06e-03	3 <u>3.87e-(</u>	$\underline{03}$ 3.24e-0	03 1.79e-0	03 1.74e-0	1.82e-	03 1.95e-	03 2.10e-	03 2.31e-0	2.50e-0	03 2.69e-	03 2.88e-	03
	7 2	2.55e-03	3 1.98e-0)3 1.70e-0	3 1.62e-0	03 1.65e-0	1.75e-	03 1.90e-0	03 2.08e-	03 2.25e-0	2.44e-0	03 2.65e-	03 2.86e-	03
	8 1	1.43e-03	3 1.47e-0	1.50e-0	3 1.56e-0	03 1.64e-0	1.74e-	03 1.89e-0	03 2.07e-	03 2.29e-0	2.47e-0	03 2.67e-	03 2.87e-	03
	9 1	1.32e-03	3 1.42e-0	1.46e-0	3 1.56e-0	03 1.63e-0	1.74e-	03 1.89e-0	03 2.07e-	03 2.26e-0	2.45e-0	03 2.65e-	03 2.87e-	03
	10 1	1.31e-03	3 1.40e-0	1.45e-0	3 1.56e-0	03 1.63e-0	1.74e-	03 1.89e-0	03 2.07e-	03 2.26e-0	2.45e-0	03 2.64e-	03 2.85e-	03
	11 1	1.31e-03	3 1.40e-0	1.45e-0	3 1.56e-0)3 1.42e-(1.52e-	03 1.67e-0	03 1.86e-	03 2.08e-0)3 2.31e-0	03 2.63e-	03 2.87e-	03
	12 1	1.31e-03	3 1.40e-0)3 1.45e-0	3 1.56e-0	03 1.65e-0	03 1.78e-	03 1.93e-0	03 2.11e-	03 2.29e-0	2.48e-0	03 2.67e-	03 2.87e-	03
	13 1	1.31e-03	3 1.40e-0	03 1.45e-0	3 1.56e-0	03 1.63e-0	1.74e-	03 1.89e-0	03 2.07e-	03 2.27e-0	03 2.46e-0	03 2.66e-	03 2.87e-	03

TABLE 23. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 3.5$: Depth averaged turbulent kinetic energy. The value for the cells containing the turbines have been underlined

_

	downstream stream wise direction \leftarrow													
1		1.0724	1.2647	1.2820	1.2998	1.3180	1.3365	1.3552	1.3739	1.3927	1.4113	1.4295	1.4470	1.4619
2		1.1797	1.3820	1.4028	1.4247	1.4473	1.4702	1.4923	1.5111	1.5219	1.5149	1.4702	1.3508	1.1310
3		1.1204	1.3330	1.3540	1.3757	1.3981	1.4211	1.4446	1.4685	1.4923	1.5158	1.5382	1.5583	1.5732
4		1.1223	1.3328	1.3546	1.3767	1.3987	1.4200	1.4400	1.4578	1.4720	1.4805	1.4805	1.4679	1.4385
5		1.1626	1.3112	1.3271	1.3433	1.3599	1.3766	1.3935	1.4103	1.4269	1.4428	1.4568	1.4658	1.4665
6		1.2259	1.3557	1.3712	1.3873	1.4036	1.4194	1.4332	1.4422	1.4410	1.4183	1.3521	1.2056	0.9689
7		1.0916	1.1975	1.2092	1.2213	1.2334	1.2456	1.2576	1.2690	1.2792	1.2873	1.2918	1.2871	1.2760
8		0.9815	1.0670	1.0697	1.0726	1.0763	1.0790	1.0805	1.0801	1.0770	1.0648	1.0535	1.0383	1.0183
9		0.8478	0.8718	0.8741	0.8764	0.8786	0.8808	0.8832	0.8707	0.8743	0.8917	0.8983	0.9063	0.9155
10		0.7798	0.8534	0.8600	0.8670	0.8744	0.8823	0.8908	0.8997	0.9093	0.9017	0.9123	0.9235	0.9350
11		0.7282	0.8080	0.8156	0.8234	0.8316	0.8401	0.8489	0.8580	0.8676	0.8776	0.8880	0.8990	0.9101
12		0.7219	0.8073	0.8151	0.8232	0.8315	0.8401	0.8490	0.8583	0.8679	0.8779	0.8883	0.8993	0.9104
13		0.7280	0.8122	0.8199	0.8278	0.8359	0.8444	0.8531	0.8621	0.8716	0.8815	0.8918	0.9026	0.9136
					s	tream w	ise direct	tion \leftarrow					inlet	
	1	1.4713	1.4117	1.3081	1.2394	1.3249	0.7547	0.7776	0.7842	1.0701	1.0988	1.1356	1.0820	1
	2	0.8347	0.6118	1.0256	1.1561	1.3138	1.4011	1.2677	1.1554	1.0965	1.1151	1.1552	1.1241	
	3	1.5796	15048	1 0000							111101	1.1001		
	4		1.0010	1.2999	1.1597	1.1829	0.8984	0.8721	0.9437	1.1471	1.1750	1.1858	1.1922	
	4	1.3783	1.2581	1.2999 1.2120	$1.1597 \\ 1.2009$	$1.1829 \\ 1.3655$	$\frac{0.8984}{1.4165}$	$0.8721 \\ 1.3898$	$0.9437 \\ 1.2764$	$1.1471 \\ 1.1303$	1.1750 1.1452	1.1858 1.1782	$1.1922 \\ 1.1140$	
	$\frac{4}{5}$	$1.3783 \\ 1.4508$	1.2581 1.3591	1.2999 1.2120 1.1861	$1.1597 \\ 1.2009 \\ 1.0840$	$\begin{array}{c} 1.1829 \\ 1.3655 \\ 1.1265 \end{array}$	$\frac{0.8984}{1.4165}\\1.1641$	$0.8721 \\ 1.3898 \\ 1.1015$	0.9437 1.2764 1.0757	$1.1471 \\ 1.1303 \\ 1.0600$	$ 1.1750 \\ 1.1452 \\ 1.0361 $	$ 1.1858 \\ 1.1782 \\ 1.0838 $	$1.1922 \\ 1.1140 \\ 1.0649$	
	$\frac{4}{5}$	$1.3783 \\ 1.4508 \\ 0.6874$	$ \begin{array}{r} 1.2581 \\ 1.3591 \\ \underline{0.4717} \end{array} $	$ \begin{array}{c} 1.2999\\ 1.2120\\ 1.1861\\ 0.8402 \end{array} $	$ \begin{array}{r} 1.1597 \\ 1.2009 \\ 1.0840 \\ 0.9959 \end{array} $	$ \begin{array}{r} 1.1829\\ 1.3655\\ 1.1265\\ 1.0475 \end{array} $	$ \begin{array}{r} \underline{0.8984} \\ 1.4165 \\ 1.1641 \\ 1.0421 \\ \end{array} $	$\begin{array}{c} 0.8721 \\ 1.3898 \\ 1.1015 \\ 1.0508 \end{array}$	$\begin{array}{c} 0.9437 \\ 1.2764 \\ 1.0757 \\ 1.0618 \end{array}$	1.1471 1.1303 1.0600 1.1177	$1.1750 \\ 1.1452 \\ 1.0361 \\ 1.1697$	$ 1.1858 \\ 1.1782 \\ 1.0838 \\ 1.1925 $	$\begin{array}{c} 1.1922 \\ 1.1140 \\ 1.0649 \\ 1.2160 \end{array}$	
	$4\\5\\6\\7$	$\begin{array}{c} 1.3783 \\ 1.4508 \\ 0.6874 \\ 1.2434 \end{array}$	$ \begin{array}{c} 1.2581 \\ 1.3591 \\ \underline{0.4717} \\ 1.1060 \end{array} $	$ \begin{array}{c} 1.2999\\ 1.2120\\ 1.1861\\ 0.8402\\ 1.0239 \end{array} $	$\begin{array}{c} 1.1597 \\ 1.2009 \\ 1.0840 \\ 0.9959 \\ 0.9740 \end{array}$	$\begin{array}{c} 1.1829 \\ 1.3655 \\ 1.1265 \\ 1.0475 \\ 0.9888 \end{array}$	$\begin{array}{r} \underline{0.8984} \\ 1.4165 \\ 1.1641 \\ 1.0421 \\ 1.0003 \end{array}$	$\begin{array}{c} 0.8721 \\ 1.3898 \\ 1.1015 \\ 1.0508 \\ 1.0207 \end{array}$	$\begin{array}{c} 0.9437 \\ 1.2764 \\ 1.0757 \\ 1.0618 \\ 1.0425 \end{array}$	$\begin{array}{c} 1.1471 \\ 1.1303 \\ 1.0600 \\ 1.1177 \\ 1.0517 \end{array}$	$1.1750 \\ 1.1452 \\ 1.0361 \\ 1.1697 \\ 1.0688$	$1.1858 \\ 1.1782 \\ 1.0838 \\ 1.1925 \\ 1.1055$	$\begin{array}{c} 1.1922 \\ 1.1140 \\ 1.0649 \\ 1.2160 \\ 1.1514 \end{array}$	
		$\begin{array}{c} 1.3783 \\ 1.4508 \\ 0.6874 \\ 1.2434 \\ 0.9954 \end{array}$	$\begin{array}{c} 1.0010\\ 1.2581\\ 1.3591\\ 0.4717\\ 1.1060\\ 0.9838\end{array}$	$\begin{array}{c} 1.2999\\ 1.2120\\ 1.1861\\ 0.8402\\ 1.0239\\ 0.9876\end{array}$	$\begin{array}{c} 1.1597 \\ 1.2009 \\ 1.0840 \\ 0.9959 \\ 0.9740 \\ 0.9705 \end{array}$	$\begin{array}{c} 1.1829 \\ 1.3655 \\ 1.1265 \\ 1.0475 \\ 0.9888 \\ 0.9869 \end{array}$	$\begin{array}{r} \underline{0.8984} \\ 1.4165 \\ 1.1641 \\ 1.0421 \\ 1.0003 \\ 0.9858 \end{array}$	$\begin{array}{c} 0.8721 \\ 1.3898 \\ 1.1015 \\ 1.0508 \\ 1.0207 \\ 1.0065 \end{array}$	$\begin{array}{c} 0.9437 \\ 1.2764 \\ 1.0757 \\ 1.0618 \\ 1.0425 \\ 1.0309 \end{array}$	$\begin{array}{c} 1.1471 \\ 1.1303 \\ 1.0600 \\ 1.1177 \\ 1.0517 \\ 1.0930 \end{array}$	$1.1750 \\ 1.1452 \\ 1.0361 \\ 1.1697 \\ 1.0688 \\ 1.1185$	$1.1858 \\ 1.1782 \\ 1.0838 \\ 1.1925 \\ 1.1055 \\ 1.1456$	$\begin{array}{c} 1.1922 \\ 1.1140 \\ 1.0649 \\ 1.2160 \\ 1.1514 \\ 1.1746 \end{array}$	
		$\begin{array}{c} 1.3783 \\ 1.4508 \\ 0.6874 \\ 1.2434 \\ 0.9954 \\ 0.9369 \end{array}$	$\begin{array}{c} 1.0010\\ 1.2581\\ 1.3591\\ 0.4717\\ 1.1060\\ 0.9838\\ 0.9514 \end{array}$	$\begin{array}{c} 1.2999\\ 1.2120\\ 1.1861\\ 0.8402\\ 1.0239\\ 0.9876\\ 0.9606\end{array}$	$\begin{array}{c} 1.1597 \\ 1.2009 \\ 1.0840 \\ 0.9959 \\ 0.9740 \\ 0.9705 \\ 0.9668 \end{array}$	$\begin{array}{c} 1.1829 \\ 1.3655 \\ 1.1265 \\ 1.0475 \\ 0.9888 \\ 0.9869 \\ 0.9710 \end{array}$	$\begin{array}{r} \underline{0.8984} \\ 1.4165 \\ 1.1641 \\ 1.0421 \\ 1.0003 \\ 0.9858 \\ 0.9862 \end{array}$	$\begin{array}{c} 0.8721 \\ 1.3898 \\ 1.1015 \\ 1.0508 \\ 1.0207 \\ 1.0065 \\ 1.0069 \end{array}$	$\begin{array}{c} 0.9437\\ 1.2764\\ 1.0757\\ 1.0618\\ 1.0425\\ 1.0309\\ 1.0296\end{array}$	$\begin{array}{c} 1.1471 \\ 1.1303 \\ 1.0600 \\ 1.1177 \\ 1.0517 \\ 1.0930 \\ 1.0503 \end{array}$	$\begin{array}{c} 1.1750\\ 1.1452\\ 1.0361\\ 1.1697\\ 1.0688\\ 1.1185\\ 1.0734 \end{array}$	$\begin{array}{c} 1.1858\\ 1.1858\\ 1.1782\\ 1.0838\\ 1.1925\\ 1.1055\\ 1.1456\\ 1.1046\end{array}$	$\begin{array}{c} 1.1922\\ 1.1140\\ 1.0649\\ 1.2160\\ 1.1514\\ 1.1746\\ 1.1675\end{array}$	
		$\begin{array}{c} 1.3783 \\ 1.4508 \\ 0.6874 \\ 1.2434 \\ 0.9954 \\ 0.9369 \\ 0.9225 \end{array}$	$\begin{array}{c} 1.0010\\ 1.2581\\ 1.3591\\ \underline{0.4717}\\ 1.1060\\ 0.9838\\ 0.9514\\ 0.9376\end{array}$	$\begin{array}{c} 1.2999\\ 1.2120\\ 1.1861\\ 0.8402\\ 1.0239\\ 0.9876\\ 0.9606\\ 0.9455\end{array}$	$\begin{array}{c} 1.1597 \\ 1.2009 \\ 1.0840 \\ 0.9959 \\ 0.9740 \\ 0.9705 \\ 0.9668 \\ 0.9624 \end{array}$	$\begin{array}{c} 1.1829\\ 1.3655\\ 1.1265\\ 1.0475\\ 0.9888\\ 0.9869\\ 0.9710\\ 0.9713\end{array}$	$\begin{array}{c} \underline{0.8984} \\ 1.4165 \\ 1.1641 \\ 1.0421 \\ 1.0003 \\ 0.9858 \\ 0.9862 \\ 0.9866 \end{array}$	$\begin{array}{c} 0.8721\\ 1.3898\\ 1.1015\\ 1.0508\\ 1.0207\\ 1.0065\\ 1.0069\\ 1.0073\end{array}$	$\begin{array}{c} 0.9437\\ 1.2764\\ 1.0757\\ 1.0618\\ 1.0425\\ 1.0309\\ 1.0296\\ 1.0303\end{array}$	$\begin{array}{c} 1.1471\\ 1.1303\\ 1.0600\\ 1.1177\\ 1.0517\\ 1.0930\\ 1.0503\\ 1.0516\end{array}$	$\begin{array}{c} 1.1750\\ 1.1452\\ 1.0361\\ 1.1697\\ 1.0688\\ 1.1185\\ 1.0734\\ 1.0753\end{array}$	$\begin{array}{c} 1.1858\\ 1.1858\\ 1.1782\\ 1.0838\\ 1.1925\\ 1.1055\\ 1.1456\\ 1.1046\\ 1.0940 \end{array}$	$\begin{array}{c} 1.1922\\ 1.1140\\ 1.0649\\ 1.2160\\ 1.1514\\ 1.1746\\ 1.1675\\ 1.1169\end{array}$	
	4 5 6 7 8 9 10 11	$\begin{array}{c} 1.3783 \\ 1.4508 \\ 0.6874 \\ 1.2434 \\ 0.9954 \\ 0.9369 \\ 0.9225 \\ 0.9225 \end{array}$	$\begin{array}{c} 1.0010\\ 1.2581\\ 1.3591\\ 0.4717\\ 1.1060\\ 0.9838\\ 0.9514\\ 0.9376\\ 0.9379\end{array}$	$\begin{array}{c} 1.2999\\ 1.2120\\ 1.1861\\ 0.8402\\ 1.0239\\ 0.9876\\ 0.9606\\ 0.9455\\ 0.9457\end{array}$	$\begin{array}{c} 1.1597\\ 1.2009\\ 1.0840\\ 0.9959\\ 0.9740\\ 0.9705\\ 0.9668\\ 0.9624\\ 0.9696\end{array}$	$\begin{array}{c} 1.1829\\ 1.3655\\ 1.1265\\ 1.0475\\ 0.9888\\ 0.9869\\ 0.9710\\ 0.9713\\ 0.7243\end{array}$	$\begin{array}{c} \underline{0.8984} \\ 1.4165 \\ 1.1641 \\ 1.0421 \\ 1.0003 \\ 0.9858 \\ 0.9862 \\ 0.9866 \\ 0.7342 \end{array}$	$\begin{array}{c} 0.8721\\ 1.3898\\ 1.1015\\ 1.0508\\ 1.0207\\ 1.0065\\ 1.0069\\ 1.0073\\ 0.7503\end{array}$	$\begin{array}{c} 0.9437\\ 1.2764\\ 1.0757\\ 1.0618\\ 1.0425\\ 1.0309\\ 1.0296\\ 1.0303\\ 0.7706\end{array}$	$\begin{array}{c} 1.1471\\ 1.1303\\ 1.0600\\ 1.1177\\ 1.0517\\ 1.0930\\ 1.0503\\ 1.0516\\ 0.7926\end{array}$	$\begin{array}{c} 1.1750\\ 1.1452\\ 1.0361\\ 1.1697\\ 1.0688\\ 1.1185\\ 1.0734\\ 1.0753\\ 0.8226\end{array}$	$\begin{array}{c} 1.1858\\ 1.1858\\ 1.1782\\ 1.0838\\ 1.1925\\ 1.1055\\ 1.1456\\ 1.1046\\ 1.0940\\ 0.9995\end{array}$	$\begin{array}{c} 1.1922\\ 1.1140\\ 1.0649\\ 1.2160\\ 1.1514\\ 1.1746\\ 1.1675\\ 1.1169\\ 1.1512\end{array}$	
	$ \begin{array}{c} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $	$\begin{array}{c} 1.3783\\ 1.4508\\ 0.6874\\ 1.2434\\ 0.9954\\ 0.9369\\ 0.9225\\ 0.9225\\ 0.9228\end{array}$	$\begin{array}{c} 1.0010\\ 1.2581\\ 1.3591\\ 0.4717\\ 1.1060\\ 0.9838\\ 0.9514\\ 0.9376\\ 0.9379\\ 0.9383\end{array}$	$\begin{array}{c} 1.2999\\ 1.2120\\ 1.1861\\ 0.8402\\ 1.0239\\ 0.9876\\ 0.9606\\ 0.9455\\ 0.9455\\ 0.9461\end{array}$	$\begin{array}{c} 1.1597 \\ 1.2009 \\ 1.0840 \\ 0.9959 \\ 0.9740 \\ 0.9705 \\ 0.9668 \\ 0.9624 \\ 0.9696 \\ 0.9648 \end{array}$	$\begin{array}{c} 1.1829\\ 1.3655\\ 1.1265\\ 1.0475\\ 0.9888\\ 0.9869\\ 0.9710\\ 0.9713\\ 0.7243\\ 0.9970\end{array}$	$\begin{array}{c} \underline{0.8984} \\ 1.4165 \\ 1.1641 \\ 1.0421 \\ 1.0003 \\ 0.9858 \\ 0.9862 \\ 0.9866 \\ 0.7342 \\ 1.0377 \end{array}$	$\begin{array}{c} 0.8721\\ 1.3898\\ 1.1015\\ 1.0508\\ 1.0207\\ 1.0065\\ 1.0069\\ 1.0073\\ 0.7503\\ 1.0595 \end{array}$	$\begin{array}{c} 0.9437\\ 1.2764\\ 1.0757\\ 1.0618\\ 1.0425\\ 1.0309\\ 1.0296\\ 1.0303\\ 0.7706\\ 1.0833\end{array}$	$\begin{array}{c} 1.1471\\ 1.1303\\ 1.0600\\ 1.1177\\ 1.0517\\ 1.0930\\ 1.0503\\ 1.0516\\ 0.7926\\ 1.1053\end{array}$	$\begin{array}{c} 1.1750\\ 1.1452\\ 1.0361\\ 1.1697\\ 1.0688\\ 1.1185\\ 1.0734\\ 1.0753\\ 0.8226\\ 1.1285\end{array}$	$\begin{array}{c} 1.1858\\ 1.1858\\ 1.1782\\ 1.0838\\ 1.1925\\ 1.1055\\ 1.1456\\ 1.1046\\ 1.0940\\ 0.9995\\ 1.1570\end{array}$	$\begin{array}{c} 1.1922\\ 1.1140\\ 1.0649\\ 1.2160\\ 1.1514\\ 1.1746\\ 1.1675\\ 1.1169\\ 1.1512\\ 1.1950\end{array}$	

TABLE 24. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 3.5$: Depth averaged turbulent viscosity. The value for the cells containing the turbines have been underlined

70

3.3.2. Tip speed ratio $\gamma = 4.0$. Figure 32 shows mosaic plots of the binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity. The bin containing the upstream hubs are at (2.1,0.0) while the downstream hubs are at (0.0,0.0) and it is easily identifiable in the velocity plot showing the expected velocity deficit associated with the flow passing the turbine face. It should be noted that the centre upstream hub lies on the symmetry plane and so only half the rotor plane is used in the simulation. Tables 25 to 27 present the binned mean values with the bin containing the turbine nacelle underlined.

FIGURE 32. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 4.0$: Mosaic plots showing binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity.
	down	stream					strea	am wise	direction	\leftarrow				
1		0.3942	0.3956	0.3960	0.3964	0.3969	0.3975	0.3983	0.3991	0.4001	0.4014	0.4028	0.4046	0.4062
2		0.3904	0.3814	0.3797	0.3777	0.3753	0.3724	0.3688	0.3643	0.3586	0.3510	0.3408	0.3274	0.3127
3		0.3863	0.3816	0.3810	0.3804	0.3797	0.3790	0.3781	0.3772	0.3760	0.3746	0.3728	0.3705	0.3677
4		0.3952	0.3940	0.3945	0.3952	0.3962	0.3974	0.3991	0.4012	0.4040	0.4078	0.4131	0.4203	0.4293
5		0.4033	0.3975	0.3970	0.3965	0.3959	0.3952	0.3944	0.3933	0.3920	0.3902	0.3880	0.3847	0.3807
6		0.4140	0.4010	0.3988	0.3962	0.3932	0.3895	0.3850	0.3795	0.3725	0.3637	0.3525	0.3385	0.3262
7		0.4349	0.4324	0.4322	0.4319	0.4315	0.4312	0.4310	0.4308	0.4308	0.4315	0.4324	0.4350	0.4385
8		0.4584	0.4633	0.4642	0.4651	0.4661	0.4672	0.4686	0.4704	0.4728	0.4762	0.4797	0.4842	0.4883
9		0.4771	0.4833	0.4839	0.4844	0.4849	0.4855	0.4860	0.4864	0.4869	0.4877	0.4880	0.4880	0.4877
10		0.4837	0.4867	0.4868	0.4869	0.4869	0.4869	0.4869	0.4868	0.4867	0.4856	0.4853	0.4849	0.4838
11		0.4817	0.4833	0.4833	0.4833	0.4832	0.4831	0.4830	0.4828	0.4826	0.4823	0.4820	0.4811	0.4798
12		0.4804	0.4815	0.4814	0.4814	0.4812	0.4811	0.4809	0.4807	0.4803	0.4799	0.4794	0.4782	0.4767
13		0.4770	0.4772	0.4771	0.4769	0.4766	0.4763	0.4759	0.4754	0.4747	0.4739	0.4728	0.4714	0.4698
					s	stream w	ise direct	tion \leftarrow					inlet	-
	1	0.4069	0.4069	0.4109	$\frac{1}{0.4158}$	tream w 0.3962	ise direct <u>0.3382</u>	$\frac{1}{0.3805}$	0.3997	0.4328	0.4391	0.4442	inlet 0.4432	2
	$\frac{1}{2}$	$0.4069 \\ 0.3068$	0.4069 0.3351	$0.4109 \\ 0.3939$		tream w 0.3962 0.4348	ise direct 0.3382 0.4351	$\frac{\text{tion} \leftarrow}{0.3805}\\0.4527$	0.3997 0.4489	$0.4328 \\ 0.4398$	$0.4391 \\ 0.4436$	$0.4442 \\ 0.4469$	inlet 0.4432 0.4458	<u>;</u> <u>?</u>
	$\frac{1}{2}$	$\begin{array}{r} 0.4069 \\ 0.3068 \\ 0.3632 \end{array}$	$0.4069 \\ \underline{0.3351} \\ 0.3664$	$\begin{array}{r} 0.4109 \\ 0.3939 \\ 0.3920 \end{array}$		$\frac{\text{stream w}}{0.3962}$ 0.4348 0.3587	ise direct 0.3382 0.4351 0.3289	$ \frac{\text{tion} \leftarrow}{0.3805} \\ 0.4527 \\ 0.3553 $	$\begin{array}{c} 0.3997 \\ 0.4489 \\ 0.3998 \end{array}$	$\begin{array}{r} 0.4328 \\ 0.4398 \\ 0.4363 \end{array}$	$\begin{array}{r} 0.4391 \\ 0.4436 \\ 0.4450 \end{array}$	$0.4442 \\ 0.4469 \\ 0.4476$	inlet 0.4432 0.4458 0.4475	<u>,</u>
	$\frac{1}{2}$ $\frac{3}{4}$	$\begin{array}{r} 0.4069 \\ 0.3068 \\ 0.3632 \\ 0.4416 \end{array}$	$\begin{array}{r} 0.4069\\ \underline{0.3351}\\ 0.3664\\ 0.4452\end{array}$	$\begin{array}{r} 0.4109 \\ 0.3939 \\ 0.3920 \\ 0.4167 \end{array}$	$ \begin{array}{r} & \text{s} \\ \hline 0.4158 \\ 0.4250 \\ 0.4102 \\ 0.4070 \end{array} $	$\begin{array}{c} & \text{stream w} \\ \hline 0.3962 \\ 0.4348 \\ 0.3587 \\ 0.3769 \end{array}$	ise direct 0.3382 0.4351 0.3289 0.3605	$ \begin{array}{r} \text{tion} \leftarrow \\ \hline 0.3805 \\ 0.4527 \\ 0.3553 \\ 0.3696 \\ \end{array} $	$\begin{array}{c} 0.3997 \\ 0.4489 \\ 0.3998 \\ 0.4011 \end{array}$	$\begin{array}{r} 0.4328 \\ 0.4398 \\ 0.4363 \\ 0.4390 \end{array}$	$\begin{array}{r} 0.4391 \\ 0.4436 \\ 0.4450 \\ 0.4445 \end{array}$	$\begin{array}{r} 0.4442 \\ 0.4469 \\ 0.4476 \\ 0.4474 \end{array}$	$ \begin{array}{r} \text{inlet} \\ 0.4432 \\ 0.4458 \\ 0.4475 \\ 0.4445 \end{array} $	<u>}</u>
	$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	$\begin{array}{r} 0.4069 \\ 0.3068 \\ 0.3632 \\ 0.4416 \\ 0.3753 \end{array}$	$\begin{array}{r} 0.4069\\ \underline{0.3351}\\ 0.3664\\ 0.4452\\ 0.3827\end{array}$	$\begin{array}{c} 0.4109 \\ 0.3939 \\ 0.3920 \\ 0.4167 \\ 0.4079 \end{array}$	0.4158 0.4250 0.4102 0.4070 0.4281	$\begin{array}{c} & \text{stream w} \\ \hline 0.3962 \\ 0.4348 \\ 0.3587 \\ 0.3769 \\ 0.4508 \end{array}$	ise direct 0.3382 0.4351 0.3289 0.3605 0.4572		$\begin{array}{c} 0.3997 \\ 0.4489 \\ 0.3998 \\ 0.4011 \\ 0.4622 \end{array}$	$\begin{array}{c} 0.4328 \\ 0.4398 \\ 0.4363 \\ 0.4390 \\ 0.4479 \end{array}$	$\begin{array}{r} 0.4391 \\ 0.4436 \\ 0.4450 \\ 0.4445 \\ 0.4469 \end{array}$	$\begin{array}{r} 0.4442 \\ 0.4469 \\ 0.4476 \\ 0.4474 \\ 0.4481 \end{array}$	inlet 0.4432 0.4458 0.4475 0.4445 0.4478	5 2 3 5 5 6
	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	$\begin{array}{r} 0.4069\\ 0.3068\\ 0.3632\\ 0.4416\\ 0.3753\\ 0.3273\end{array}$	$\begin{array}{r} 0.4069\\ \underline{0.3351}\\ 0.3664\\ 0.4452\\ 0.3827\\ \underline{0.3582}\end{array}$	$\begin{array}{c} 0.4109\\ 0.3939\\ 0.3920\\ 0.4167\\ 0.4079\\ 0.4183 \end{array}$	$\begin{array}{r} & & \\ 0.4158 \\ 0.4250 \\ 0.4102 \\ 0.4070 \\ 0.4281 \\ 0.4535 \end{array}$	$\begin{array}{r} \hline & 0.3962 \\ \hline 0.4348 \\ 0.3587 \\ 0.3769 \\ 0.4508 \\ 0.4628 \end{array}$	$\begin{array}{r} \text{ise direct} \\ \hline 0.3382 \\ \hline 0.4351 \\ \hline 0.3289 \\ \hline 0.3605 \\ 0.4572 \\ \hline 0.4725 \end{array}$		$\begin{array}{c} 0.3997 \\ 0.4489 \\ 0.3998 \\ 0.4011 \\ 0.4622 \\ 0.4638 \end{array}$	$\begin{array}{c} 0.4328\\ 0.4398\\ 0.4363\\ 0.4363\\ 0.4390\\ 0.4479\\ 0.4522 \end{array}$	$\begin{array}{c} 0.4391 \\ 0.4436 \\ 0.4450 \\ 0.4445 \\ 0.4469 \\ 0.4508 \end{array}$	$\begin{array}{c} 0.4442 \\ 0.4469 \\ 0.4476 \\ 0.4474 \\ 0.4481 \\ 0.4504 \end{array}$	inlet 0.4432 0.4458 0.4475 0.4445 0.4478 0.4478 0.4501	<u>;</u> ; ; ;
	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	$\begin{array}{c} 0.4069\\ 0.3068\\ 0.3632\\ 0.4416\\ 0.3753\\ 0.3273\\ 0.4450\end{array}$	$\begin{array}{r} 0.4069\\ \underline{0.3351}\\ 0.3664\\ 0.4452\\ 0.3827\\ \underline{0.3582}\\ 0.4616\end{array}$	$\begin{array}{c} 0.4109\\ 0.3939\\ 0.3920\\ 0.4167\\ 0.4079\\ 0.4183\\ 0.4591 \end{array}$	$\begin{array}{c} & & \\ 0.4158 \\ 0.4250 \\ 0.4102 \\ 0.4070 \\ 0.4281 \\ 0.4535 \\ 0.4639 \end{array}$	$\begin{array}{c} \text{stream w}\\ \hline 0.3962\\ 0.4348\\ 0.3587\\ 0.3769\\ 0.4508\\ 0.4628\\ 0.4664 \end{array}$	$\begin{array}{r} \text{ise direct}\\ \hline 0.3382\\ 0.4351\\ \hline 0.3289\\ 0.3605\\ 0.4572\\ 0.4725\\ 0.4685 \end{array}$	$\begin{array}{r} \text{tion} \leftarrow \\ \hline 0.3805 \\ 0.4527 \\ 0.3553 \\ 0.3696 \\ 0.4686 \\ 0.4729 \\ 0.4666 \end{array}$	$\begin{array}{c} 0.3997\\ 0.4489\\ 0.3998\\ 0.4011\\ 0.4622\\ 0.4638\\ 0.4612\end{array}$	$\begin{array}{c} 0.4328\\ 0.4398\\ 0.4363\\ 0.4390\\ 0.4479\\ 0.4522\\ 0.4540\end{array}$	$\begin{array}{c} 0.4391\\ 0.4436\\ 0.4450\\ 0.4445\\ 0.4469\\ 0.4508\\ 0.4511\end{array}$	$\begin{array}{c} 0.4442\\ 0.4469\\ 0.4476\\ 0.4474\\ 0.4481\\ 0.4504\\ 0.4502\end{array}$	inlet 0.4432 0.4458 0.4475 0.4445 0.4478 0.4478 0.4501 0.4499	5 2 3 5 6 8 8
	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	$\begin{array}{c} 0.4069\\ 0.3068\\ 0.3632\\ 0.4416\\ 0.3753\\ 0.3273\\ 0.4450\\ 0.4912\end{array}$	$\begin{array}{r} 0.4069\\ \underline{0.3351}\\ 0.3664\\ 0.4452\\ 0.3827\\ \underline{0.3582}\\ 0.4616\\ 0.4846\end{array}$	$\begin{array}{c} 0.4109\\ 0.3939\\ 0.3920\\ 0.4167\\ 0.4079\\ 0.4183\\ 0.4591\\ 0.4756\end{array}$	$\begin{array}{c} & & \\ 0.4158 \\ 0.4250 \\ 0.4250 \\ 0.4070 \\ 0.4281 \\ 0.4535 \\ 0.4639 \\ 0.4683 \end{array}$	$\begin{array}{c} \text{stream w}\\ \hline 0.3962\\ 0.4348\\ 0.3587\\ 0.3769\\ 0.4508\\ 0.4628\\ 0.4664\\ 0.4664\end{array}$	$\begin{array}{c} \text{ise direct}\\ \hline 0.3382\\ 0.4351\\ \hline 0.3289\\ 0.3605\\ 0.4572\\ 0.4725\\ 0.4685\\ 0.4655\\ \end{array}$	$\begin{array}{r} {\rm tion} \leftarrow \\ \hline 0.3805 \\ 0.4527 \\ 0.3553 \\ 0.3696 \\ 0.4686 \\ 0.4729 \\ 0.4666 \\ 0.4630 \end{array}$	$\begin{array}{c} 0.3997\\ 0.4489\\ 0.3998\\ 0.4011\\ 0.4622\\ 0.4638\\ 0.4612\\ 0.4591 \end{array}$	$\begin{array}{c} 0.4328\\ 0.4398\\ 0.4363\\ 0.4390\\ 0.4390\\ 0.4479\\ 0.4522\\ 0.4540\\ 0.4545\end{array}$	$\begin{array}{c} 0.4391\\ 0.4436\\ 0.4450\\ 0.4445\\ 0.4469\\ 0.4508\\ 0.4511\\ 0.4520\\ \end{array}$	$\begin{array}{c} 0.4442\\ 0.4469\\ 0.4476\\ 0.4474\\ 0.4481\\ 0.4504\\ 0.4502\\ 0.4506\end{array}$	inlet 0.4432 0.4458 0.4475 0.4445 0.4478 0.4478 0.4501 0.4499 0.4500	5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array} $	$\begin{array}{c} 0.4069\\ 0.3068\\ 0.3632\\ 0.4416\\ 0.3753\\ 0.3273\\ 0.4450\\ 0.4912\\ 0.4860\end{array}$	$\begin{array}{c} 0.4069\\ \underline{0.3351}\\ 0.3664\\ 0.4452\\ 0.3827\\ \underline{0.3582}\\ 0.4616\\ 0.4846\\ 0.4797\end{array}$	$\begin{array}{c} 0.4109\\ 0.3939\\ 0.3920\\ 0.4167\\ 0.4079\\ 0.4183\\ 0.4591\\ 0.4756\\ 0.4753\end{array}$	$\begin{array}{c} & & \\ 0.4158 \\ 0.4250 \\ 0.4102 \\ 0.4070 \\ 0.4281 \\ 0.4535 \\ 0.4639 \\ 0.4683 \\ 0.4678 \end{array}$	$\begin{array}{c} \text{tream w} \\ \hline 0.3962 \\ 0.4348 \\ 0.3587 \\ 0.3769 \\ 0.4508 \\ 0.4628 \\ 0.4664 \\ 0.4664 \\ 0.4654 \end{array}$	$\begin{array}{r} \text{ise direct}\\ \hline 0.3382\\ \hline 0.4351\\ \hline 0.3289\\ \hline 0.3605\\ \hline 0.4572\\ \hline 0.4725\\ \hline 0.4685\\ \hline 0.4655\\ \hline 0.4635\end{array}$	$\begin{array}{r} \text{tion} \leftarrow \\ \hline 0.3805 \\ 0.4527 \\ 0.3553 \\ 0.3696 \\ 0.4686 \\ 0.4729 \\ 0.4666 \\ 0.4630 \\ 0.4610 \end{array}$	$\begin{array}{c} 0.3997\\ 0.4489\\ 0.3998\\ 0.4011\\ 0.4622\\ 0.4638\\ 0.4612\\ 0.4591\\ 0.4578\end{array}$	$\begin{array}{c} 0.4328\\ 0.4398\\ 0.4363\\ 0.4390\\ 0.4390\\ 0.4479\\ 0.4522\\ 0.4540\\ 0.4545\\ 0.4538\end{array}$	$\begin{array}{c} 0.4391\\ 0.4436\\ 0.4450\\ 0.4445\\ 0.4469\\ 0.4508\\ 0.4511\\ 0.4520\\ 0.4515\end{array}$	$\begin{array}{c} 0.4442\\ 0.4469\\ 0.4476\\ 0.4474\\ 0.4481\\ 0.4504\\ 0.4502\\ 0.4506\\ 0.4503\end{array}$	inlet 0.4432 0.4458 0.4475 0.4445 0.4445 0.4478 0.4501 0.4499 0.4500 0.4499	<u>;</u> ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10$	$\begin{array}{c} 0.4069\\ 0.3068\\ 0.3632\\ 0.4416\\ 0.3753\\ 0.3273\\ 0.4450\\ 0.4912\\ 0.4860\\ 0.4805\end{array}$	$\begin{array}{c} 0.4069\\ \underline{0.3351}\\ 0.3664\\ 0.4452\\ 0.3827\\ \underline{0.3582}\\ 0.4616\\ 0.4846\\ 0.4797\\ 0.4755\end{array}$	$\begin{array}{c} 0.4109\\ 0.3939\\ 0.3920\\ 0.4167\\ 0.4079\\ 0.4183\\ 0.4591\\ 0.4756\\ 0.4753\\ 0.4724\end{array}$	$\begin{array}{c} & \\ 0.4158 \\ 0.4250 \\ 0.4250 \\ 0.4102 \\ 0.4070 \\ 0.4281 \\ 0.4535 \\ 0.4639 \\ 0.4683 \\ 0.4678 \\ 0.4667 \end{array}$	$\begin{array}{c} \text{tream w} \\ \hline 0.3962 \\ 0.4348 \\ 0.3587 \\ 0.3769 \\ 0.4508 \\ 0.4628 \\ 0.4664 \\ 0.4664 \\ 0.4664 \\ 0.4654 \\ 0.4642 \end{array}$	$\begin{array}{r} \text{ise direct}\\ \hline 0.3382\\ 0.4351\\ \hline 0.3289\\ 0.3605\\ 0.4572\\ 0.4725\\ 0.4655\\ 0.4655\\ 0.4635\\ 0.4616\end{array}$	$\begin{array}{r} \text{tion} \leftarrow \\ \hline 0.3805 \\ 0.4527 \\ 0.3553 \\ 0.3696 \\ 0.4686 \\ 0.4729 \\ 0.4666 \\ 0.4630 \\ 0.4630 \\ 0.4610 \\ 0.4591 \end{array}$	$\begin{array}{c} 0.3997\\ 0.4489\\ 0.3998\\ 0.4011\\ 0.4622\\ 0.4638\\ 0.4612\\ 0.4591\\ 0.4578\\ 0.4565\end{array}$	$\begin{array}{c} 0.4328\\ 0.4398\\ 0.4363\\ 0.4390\\ 0.4479\\ 0.4522\\ 0.4540\\ 0.4545\\ 0.4538\\ 0.4533\end{array}$	$\begin{array}{c} 0.4391\\ 0.4436\\ 0.4450\\ 0.4445\\ 0.4469\\ 0.4508\\ 0.4511\\ 0.4520\\ 0.4515\\ 0.4514\end{array}$	$\begin{array}{c} 0.4442\\ 0.4469\\ 0.4476\\ 0.4474\\ 0.4481\\ 0.4504\\ 0.4502\\ 0.4506\\ 0.4503\\ 0.4503\\ 0.4503\end{array}$	inlet 0.4432 0.4458 0.4475 0.4475 0.4478 0.4501 0.4499 0.4500 0.4499 0.4498	
	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{array} $	$\begin{array}{c} 0.4069\\ 0.3068\\ 0.3632\\ 0.4416\\ 0.3753\\ 0.3273\\ 0.4450\\ 0.4912\\ 0.4860\\ 0.4805\\ 0.4775\end{array}$	$\begin{array}{c} 0.4069\\ \underline{0.3351}\\ 0.3664\\ 0.4452\\ 0.3827\\ \underline{0.3582}\\ 0.4616\\ 0.4846\\ 0.4797\\ 0.4755\\ 0.4733\end{array}$	$\begin{array}{c} 0.4109\\ 0.3939\\ 0.3920\\ 0.4167\\ 0.4079\\ 0.4183\\ 0.4591\\ 0.4756\\ 0.4753\\ 0.4724\\ 0.4707 \end{array}$	$\begin{array}{c} & \\ 0.4158 \\ 0.4250 \\ 0.4250 \\ 0.4070 \\ 0.4281 \\ 0.4535 \\ 0.4639 \\ 0.4639 \\ 0.4663 \\ 0.4667 \\ 0.4667 \\ 0.4662 \end{array}$	$\begin{array}{c} \text{tream w}\\ \hline 0.3962\\ 0.4348\\ 0.3587\\ 0.3769\\ 0.4508\\ 0.4628\\ 0.4664\\ 0.4664\\ 0.4654\\ 0.4654\\ 0.4654\\ 0.4654\\ 0.4657\\ \end{array}$	$\begin{array}{r} \text{ise direct}\\ \hline 0.3382\\ 0.4351\\ \hline 0.3289\\ 0.3605\\ 0.4572\\ 0.4725\\ 0.4685\\ 0.4685\\ 0.4635\\ 0.4635\\ 0.4616\\ 0.4548 \end{array}$	$\begin{array}{r} \text{tion} \leftarrow \\ \hline 0.3805 \\ 0.4527 \\ 0.3553 \\ 0.3696 \\ 0.4686 \\ 0.4729 \\ 0.4666 \\ 0.4630 \\ 0.4610 \\ 0.4591 \\ 0.4528 \end{array}$	$\begin{array}{c} 0.3997\\ 0.4489\\ 0.3998\\ 0.4011\\ 0.4622\\ 0.4638\\ 0.4612\\ 0.4591\\ 0.4578\\ 0.4578\\ 0.4565\\ 0.4511\end{array}$	$\begin{array}{c} 0.4328\\ 0.4398\\ 0.4363\\ 0.4390\\ 0.4479\\ 0.4522\\ 0.4540\\ 0.4545\\ 0.4538\\ 0.4533\\ 0.4491 \end{array}$	$\begin{array}{c} 0.4391\\ 0.4436\\ 0.4450\\ 0.4445\\ 0.4469\\ 0.4508\\ 0.4511\\ 0.4520\\ 0.4515\\ 0.4514\\ 0.4514\\ 0.4482\end{array}$	$\begin{array}{c} 0.4442\\ 0.4469\\ 0.4476\\ 0.4474\\ 0.4481\\ 0.4504\\ 0.4502\\ 0.4506\\ 0.4503\\ 0.4503\\ 0.4503\\ 0.4491 \end{array}$	inlet 0.4432 0.4458 0.4475 0.4475 0.4478 0.4478 0.4478 0.4499 0.4499 0.4499 0.4498 0.4498	5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7
	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $	$\begin{array}{c} 0.4069\\ 0.3068\\ 0.3632\\ 0.4416\\ 0.3753\\ 0.3273\\ 0.4450\\ 0.4912\\ 0.4860\\ 0.4805\\ 0.4775\\ 0.4746\end{array}$	$\begin{array}{c} 0.4069\\ \underline{0.3351}\\ 0.3664\\ 0.4452\\ 0.3827\\ \underline{0.3582}\\ 0.4616\\ 0.4846\\ 0.4797\\ 0.4755\\ 0.4733\\ 0.4709\end{array}$	$\begin{array}{c} 0.4109\\ 0.3939\\ 0.3920\\ 0.4167\\ 0.4079\\ 0.4183\\ 0.4591\\ 0.4756\\ 0.4753\\ 0.4724\\ 0.4707\\ 0.4689\end{array}$	$\begin{array}{c} & \\ 0.4158 \\ 0.4250 \\ 0.4250 \\ 0.4250 \\ 0.4070 \\ 0.4281 \\ 0.4535 \\ 0.4639 \\ 0.4663 \\ 0.4667 \\ 0.4667 \\ 0.4662 \\ 0.4646 \end{array}$	$\begin{array}{c} \text{stream w}\\ \hline 0.3962\\ 0.4348\\ 0.3587\\ 0.3769\\ 0.4508\\ 0.4628\\ 0.4628\\ 0.4664\\ 0.4664\\ 0.4664\\ 0.4654\\ 0.4654\\ 0.4654\\ 0.4657\\ 0.4634 \end{array}$	$\begin{array}{r} \text{ise direct}\\ \hline 0.3382\\ 0.4351\\ \hline 0.3289\\ 0.3605\\ 0.4572\\ 0.4725\\ 0.4685\\ 0.4685\\ 0.4655\\ 0.4635\\ 0.4616\\ 0.4548\\ 0.4611 \end{array}$	$\begin{array}{r} {\rm tion} \leftarrow \\ \hline 0.3805 \\ 0.4527 \\ 0.3553 \\ 0.3696 \\ 0.4686 \\ 0.4729 \\ 0.4666 \\ 0.4630 \\ 0.4610 \\ 0.4591 \\ 0.4528 \\ 0.4585 \end{array}$	$\begin{array}{c} 0.3997\\ 0.4489\\ 0.3998\\ 0.4011\\ 0.4622\\ 0.4638\\ 0.4612\\ 0.4591\\ 0.4578\\ 0.4565\\ 0.4511\\ 0.4562\end{array}$	$\begin{array}{c} 0.4328\\ 0.4398\\ 0.4363\\ 0.4390\\ 0.4479\\ 0.4522\\ 0.4540\\ 0.4545\\ 0.4538\\ 0.4533\\ 0.4491\\ 0.4536\end{array}$	$\begin{array}{c} 0.4391\\ 0.4436\\ 0.4450\\ 0.4450\\ 0.4469\\ 0.4508\\ 0.4511\\ 0.4520\\ 0.4515\\ 0.4515\\ 0.4514\\ 0.4482\\ 0.4518\end{array}$	$\begin{array}{c} 0.4442\\ 0.4469\\ 0.4476\\ 0.4474\\ 0.4481\\ 0.4504\\ 0.4502\\ 0.4503\\ 0.4503\\ 0.4503\\ 0.4503\\ 0.4491\\ 0.4507\end{array}$	inlet 0.4432 0.4458 0.4475 0.4445 0.4478 0.4478 0.4501 0.4499 0.4500 0.4498 0.4498 0.4498 0.4498	

TABLE 25. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 4.0$: Depth averaged velocity magnitude. The value for the cells containing the turbines have been underlined

	downstream					sti	ream wise o	direction \leftarrow	. <u></u>				
1	1.15e-03	2.06e-03	2.19e-03	2.35e-03	2.52e-03	2.72e-03	2.93e-03	3.17e-03	3.45e-03	3.75e-03	4.09e-03	4.46e-03	4.84e-03
2	1.26e-03	2.31e-03	2.48e-03	2.68e-03	2.91e-03	3.17e-03	3.47e-03	3.82e-03	4.23e-03	4.68e-03	5.17e-03	5.66e-03	6.03e-03
3	1.21e-03	2.21e-03	2.37e-03	2.56e-03	2.77e-03	3.01e-03	3.29e-03	3.60e-03	3.97e-03	4.39e-03	4.87e-03	5.41e-03	5.95e-03
4	1.19e-03	2.14e-03	2.29e-03	2.46e-03	2.64e-03	2.83e-03	3.05e-03	3.27e-03	3.51e-03	3.74e-03	3.96e-03	4.13e-03	4.21e-03
5	1.27e-03	2.19e-03	2.34e-03	2.51e-03	2.71e-03	2.93e-03	3.18e-03	3.46e-03	3.79e-03	4.17e-03	4.60e-03	5.08e-03	5.55e-03
6	1.38e-03	2.35e-03	2.51e-03	2.69e-03	2.90e-03	3.14e-03	3.41e-03	3.72e-03	4.06e-03	4.44e-03	4.83e-03	5.16e-03	5.34e-03
7	1.32e-03	2.12e-03	2.24e-03	2.38e-03	2.53e-03	2.70e-03	2.89e-03	3.10e-03	3.32e-03	3.55e-03	3.79e-03	3.99e-03	4.13e-03
8	1.10e-03	1.61e-03	1.67 e-03	1.73e-03	1.79e-03	1.85e-03	1.91e-03	1.95e-03	1.98e-03	1.97e-03	1.94e-03	1.87e-03	1.76e-03
9	7.77e-04	9.59e-04	9.79e-04	1.00e-03	1.02e-03	1.04e-03	1.06e-03	1.07e-03	1.09e-03	1.13e-03	1.17e-03	1.22e-03	1.27 e-03
10	6.40e-04	8.49e-04	8.74e-04	9.01e-04	9.31e-04	9.63e-04	9.98e-04	1.04e-03	1.08e-03	1.11e-03	1.16e-03	1.21e-03	1.27e-03
11	6.10e-04	8.14e-04	8.40e-04	8.68e-04	8.98e-04	9.30e-04	9.65e-04	1.00e-03	1.04e-03	1.09e-03	1.14e-03	1.19e-03	1.25e-03
12	6.05e-04	8.11e-04	8.37e-04	8.65e-04	8.95e-04	9.27 e- 04	9.62e-04	1.00e-03	1.04e-03	1.09e-03	1.14e-03	1.19e-03	1.25e-03
13	6.01e-04	8.05e-04	8.31e-04	8.59e-04	8.89e-04	9.22e-04	9.57 e- 04	9.95e-04	1.04e-03	1.08e-03	1.13e-03	1.18e-03	1.24e-03
					stream	wise direc	\leftrightarrow					in.	let
	1 5.23e	-03 4.91e-	03 3.93e-0	3 3.93e-0	stream 3 4.75e-0	wise direc 3 <u>4.98e-0</u>	$\leftarrow \underline{3} 4.62e-0$	3 4.16e-0	03 2.25e-0)3 2.43e-0	03 2.67e-	in 03 2.79e-	$\frac{1}{03}$
	1 5.23e 2 6.20e	-03 4.91e- -03 <u>6.00e-</u>	03 3.93e-0 03 4.82e-0	3 3.93e-0 3 3.36e-0	stream 3 4.75e-0 3 3.73e-0	wise direc <u>3</u> <u>4.98e-0</u> <u>3</u> 4.40e-0	$tion \leftarrow $	3 4.16e-0 3 2.75e-0	03 2.25e-0 03 2.23e-0)3 2.43e-()3 2.41e-()3 2.67e-)3 2.65e-	$ \begin{array}{r} \text{in} \\ 03 & 2.79e-\\ 03 & 2.79e-\\ \end{array} $	let 03 03
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-03 4.91e- -03 <u>6.00e-</u> -03 5.79e-	03 3.93e-0 03 4.82e-0 03 3.85e-0	3 3.93e-0 3 3.36e-0 3 3.45e-0	stream 3 4.75e-0 3 3.73e-0 3 5.04e-0	wise direct <u>3 4.98e-0</u> <u>3 4.40e-0</u> <u>3 5.18e-0</u>	$\begin{array}{c} \text{tion} \leftarrow \\ \underline{3} & 4.62\text{e-0} \\ 03 & 3.73\text{e-0} \\ \underline{3} & 4.99\text{e-0} \end{array}$	3 4.16e-0 3 2.75e-0 3 3.96e-0	03 2.25e-0 03 2.23e-0 03 2.28e-0	03 2.43e-0 03 2.41e-0 03 2.46e-0	03 2.67e- 03 2.65e- 03 2.68e-	in 03 2.79e- 03 2.79e- 03 2.83e-	let 03 03 03
	1 5.23e 2 6.20e 3 6.46e 4 4.11e	-03 4.91e- -03 <u>6.00e-</u> -03 5.79e- -03 3.55e-	03 3.93e-0 03 4.82e-0 03 3.85e-0 03 3.28e-0	3 3.93e-0 3 3.36e-0 3 3.45e-0 3 3.45e-0	stream 3 4.75e-0 3 3.73e-0 3 5.04e-0 3 4.97e-0	$\begin{array}{c} \text{wise direc} \\ 3 & \underline{4.98e-0} \\ 3 & 4.40e-0 \\ 3 & \underline{5.18e-0} \\ 3 & 5.61e-0 \end{array}$	$\begin{array}{c} \text{tion} \leftarrow \\ \underline{3} & 4.62\text{e-0} \\ \underline{3} & 3.73\text{e-0} \\ \underline{3} & 4.99\text{e-0} \\ \underline{3} & 5.60\text{e-0} \end{array}$	3 4.16e-0 3 2.75e-0 3 3.96e-0 3 3.85e-0	03 2.25e-0 03 2.23e-0 03 2.28e-0 03 2.26e-0	03 2.43e-0 03 2.41e-0 03 2.46e-0 03 2.43e-0	03 2.67e- 03 2.65e- 03 2.68e- 03 2.68e-	ini 03 2.79e- 03 2.79e- 03 2.83e- 03 2.78e-	let 03 03 03 03 03
	1 5.23e 2 6.20e 3 6.46e 4 4.11e 5 5.98e	-03 4.91e-0 -03 6.00e-0 -03 5.79e-0 -03 3.55e-0 -03 5.26e-0	03 3.93e-0 03 4.82e-0 03 3.85e-0 03 3.28e-0 03 3.29e-0	3 3.93e-0 3 3.36e-0 3 3.45e-0 3 3.45e-0 3 2.88e-0	stream 3 4.75e-0 3 3.73e-0 3 5.04e-0 3 4.97e-0 3 2.57e-0	$\begin{array}{c} \text{wise direc} \\ \hline 3 & \underline{4.98e-0} \\ \hline 3 & 4.40e-0 \\ \hline 3 & \underline{5.18e-0} \\ \hline 3 & 5.61e-0 \\ \hline 3 & 2.82e-0 \end{array}$	$\begin{array}{cccc} \text{trion} \leftarrow \\ \hline 3 & 4.62\text{e-0} \\ \hline 03 & 3.73\text{e-0} \\ \hline 3 & 4.99\text{e-0} \\ \hline 03 & 5.60\text{e-0} \\ \hline 03 & 2.45\text{e-0} \end{array}$	3 4.16e-(3 2.75e-(3 3.96e-(3 3.85e-(3 2.22e-(03 2.25e-0 03 2.23e-0 03 2.28e-0 03 2.26e-0 03 2.26e-0	03 2.43e-(03 2.41e-(03 2.46e-(03 2.43e-(03 2.43e-(03 2.41e-(03 2.67e 03 2.65e 03 2.68e 03 2.68e 03 2.68e 03 2.68e	in: 03 2.79e- 03 2.79e- 03 2.83e- 03 2.78e- 03 2.82e- 03 2.82e-	let 03 03 03 03 03 03
	$\begin{array}{cccc} 1 & 5.23e \\ 2 & 6.20e \\ 3 & 6.46e \\ 4 & 4.11e \\ 5 & 5.98e \\ 6 & 5.26e \end{array}$	-03 4.91e-0 -03 6.00e-1 -03 5.79e-0 -03 3.55e-1 -03 5.26e-1 -03 5.01e-1	03 3.93e-0 03 4.82e-0 03 3.85e-0 03 3.28e-0 03 3.29e-0 03 3.84e-0	3 3.93e-0 3 3.36e-0 3 3.45e-0 3 3.45e-0 3 2.88e-0 3 2.06e-0	stream 3 4.75e-0 3 3.73e-0 3 5.04e-0 3 4.97e-0 3 2.57e-0 3 1.88e-0	wise direct 3 <u>4.98e-0</u> 3 4.40e-0 3 <u>5.18e-0</u> 3 <u>5.61e-0</u> 3 2.82e-0 3 1.90e-0	$\begin{array}{cccc} \text{tion} \leftarrow \\ \underline{3} & 4.62\text{e-}0 \\ \hline 3 & 3.73\text{e-}0 \\ \underline{3} & 4.99\text{e-}0 \\ \hline 3 & 5.60\text{e-}0 \\ \hline 3 & 2.45\text{e-}0 \\ \hline 3 & 1.98\text{e-}0 \end{array}$	3 4.16e-(3 2.75e-(3 3.96e-(3 3.85e-(3 2.22e-(3 2.11e-(03 2.25e-0 03 2.23e-0 03 2.28e-0 03 2.26e-0 03 2.26e-0 03 2.26e-0 03 2.31e-0)3 2.43e-()3 2.41e-()3 2.46e-()3 2.43e-()3 2.43e-()3 2.41e-()3 2.50e-(03 2.67e 03 2.65e 03 2.68e 03 2.68e 03 2.65e 03 2.65e 03 2.65e 03 2.65e	in. 03 2.79e- 03 2.79e- 03 2.83e- 03 2.82e- 03 2.82e- 03 2.88e- 03 2.88e-	let 03 03 03 03 03 03 03 03
	$\begin{array}{ccccc} 1 & 5.23e \\ 2 & 6.20e \\ 3 & 6.46e \\ 4 & 4.11e \\ 5 & 5.98e \\ 6 & 5.26e \\ 7 & 4.08e \end{array}$	-03 4.91e-0 -03 6.00e-0 -03 5.79e-0 -03 3.55e-0 -03 5.26e-0 -03 5.01e-0 -03 2.91e-0	03 3.93e-0 03 4.82e-0 03 3.85e-0 03 3.28e-0 03 3.29e-0 03 3.84e-0 03 1.98e-0	3 3.93e-0 3 3.36e-0 3 3.45e-0 3 3.45e-0 3 2.88e-0 3 2.06e-0 3 1.72e-0	stream 3 4.75e-0 3 3.73e-0 3 5.04e-0 3 4.97e-0 3 2.57e-0 3 1.88e-0 3 1.66e-0	wise direct 3 4.98e-0 3 4.40e-0 3 5.18e-0 3 5.61e-0 3 2.82e-0 3 1.90e-0 3 1.76e-0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3 4.16e-0 3 2.75e-0 3 3.96e-0 3 3.85e-0 3 2.22e-0 3 2.11e-0 3 2.08e-0	03 2.25e-0 03 2.23e-0 03 2.28e-0 03 2.26e-0 03 2.26e-0 03 2.31e-0 03 2.26e-0	3 2.43e-0 3 2.41e-0 3 2.46e-0 3 2.43e-0 3 2.43e-0 03 2.41e-0 03 2.50e-0 03 2.44e-0	03 2.67e-1 03 2.65e-1 03 2.68e-1 03 2.68e-1 03 2.65e-1 03 2.65e-1 03 2.65e-1 03 2.65e-1 03 2.65e-1	in. 03 2.79e- 03 2.79e- 03 2.83e- 03 2.82e- 03 2.82e- 03 2.88e- 03 2.88e- 03 2.86e-	let 03 03 03 03 03 03 03 03 03 03
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-03 4.91e-4 -03 6.00e-4 -03 5.79e-4 -03 3.55e-4 -03 5.26e-4 -03 5.01e-4 -03 2.91e-4 -03 1.54e-4	03 3.93e-0 03 4.82e-0 03 3.85e-0 03 3.28e-0 03 3.29e-0 03 3.29e-0 03 3.84e-0 03 1.98e-0 03 1.55e-0	3 3.93e-0 3 3.36e-0 3 3.45e-0 3 3.45e-0 3 2.88e-0 3 2.06e-0 3 1.72e-0 3 1.57e-0	stream 3 4.75e-0 3 3.73e-0 3 5.04e-0 3 4.97e-0 3 2.57e-0 3 1.88e-0 3 1.66e-0 3 1.65e-0	wise direct 3 4.98e-0 3 4.40e-0 3 5.18e-0 3 5.61e-0 3 2.82e-0 3 1.90e-0 3 1.76e-0 3 1.74e-0	$\begin{array}{cccc} \text{tion} \leftarrow \\ \underline{3} & 4.62\text{e-0} \\ 3 & 3.73\text{e-0} \\ \underline{3} & 4.99\text{e-0} \\ 3 & 5.60\text{e-0} \\ 3 & 2.45\text{e-0} \\ 3 & 1.98\text{e-0} \\ 3 & 1.91\text{e-0} \\ 3 & 1.89\text{e-0} \end{array}$	3 4.16e-0 3 2.75e-0 3 3.96e-0 3 3.85e-0 3 2.22e-0 3 2.11e-0 3 2.08e-0 3 2.07e-0	03 2.25e-0 03 2.23e-0 03 2.28e-0 03 2.26e-0 03 2.26e-0 03 2.31e-0 03 2.26e-0	3 2.43e-0 3 2.41e-0 3 2.46e-0 3 2.43e-0 3 2.41e-0 3 2.50e-0 3 2.44e-0 3 2.42e-0 3 2.42e-0 3 2.42e-0 3 2.42e-0 3 2.42e-0 3 2.42e-0	03 2.67e 03 2.65e 03 2.68e 03 2.65e	in. 03 2.79e- 03 2.79e- 03 2.83e- 03 2.82e- 03 2.88e- 03 2.88e- 03 2.86e- 03 2.86e- 03 2.87e-	let 03 03 03 03 03 03 03 03 03 03 03
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-03 4.91e-4 -03 6.00e-4 -03 5.79e-4 -03 3.55e-4 -03 5.26e-4 -03 5.01e-4 -03 2.91e-4 -03 1.54e-4 -03 1.43e-4	03 3.93e-0 03 4.82e-0 03 3.85e-0 03 3.28e-0 03 3.29e-0 03 3.29e-0 03 3.29e-0 03 3.29e-0 03 3.84e-0 03 1.98e-0 03 1.55e-0 03 1.47e-0	3 3.93e-0 3 3.36e-0 3 3.45e-0 3 3.45e-0 3 2.88e-0 3 2.06e-0 3 1.72e-0 3 1.57e-0 3 1.57e-0	stream 3 4.75e-0 3 3.73e-0 3 5.04e-0 3 4.97e-0 3 2.57e-0 3 1.88e-0 3 1.66e-0 3 1.65e-0 3 1.63e-0	$\begin{array}{c} \text{wise direct}\\ \hline 3 & 4.98e{-}0\\ \hline 3 & 4.40e{-}0\\ \hline 3 & 5.18e{-}0\\ \hline 3 & 5.61e{-}0\\ \hline 3 & 5.61e{-}0\\ \hline 3 & 1.90e{-}0\\ \hline 3 & 1.76e{-}0\\ \hline 3 & 1.74e{-}0\\ \hline 3 & 1.74e{-}0\\ \hline \end{array}$	$\begin{array}{cccc} \text{tion} \leftarrow \\ \underline{3} & 4.62\text{e-0} \\ 3 & 3.73\text{e-0} \\ \underline{3} & 4.99\text{e-0} \\ 3 & 5.60\text{e-0} \\ 3 & 2.45\text{e-0} \\ 3 & 1.98\text{e-0} \\ 3 & 1.91\text{e-0} \\ 3 & 1.89\text{e-0} \\ 3 & 1.89\text{e-0} \\ 3 & 1.89\text{e-0} \end{array}$	3 4.16e-(3 2.75e-(3 3.96e-(3 3.85e-(3 2.22e-(3 2.11e-(3 2.08e-(3 2.07e-(3 2.07e-(03 2.25e-0 03 2.23e-0 03 2.28e-0 03 2.26e-0 03 2.26e-0 03 2.31e-0 03 2.26e-0 03 2.26e-0 03 2.26e-0 03 2.26e-0 03 2.26e-0 03 2.29e-0 03 2.26e-0	3 2.43e-(3 2.41e-(3 2.43e-(3 2.43e-(3 2.41e-(3 2.50e-(3 2.44e-(3 2.42e-(03 2.67e 03 2.65e 03 2.68e 03 2.65e	im 03 2.79e- 03 2.79e- 03 2.83e- 03 2.82e- 03 2.82e- 03 2.88e- 03 2.86e- 03 2.87e- 03 2.87e- 03 2.87e- 03 2.87e-	let 03 03 03 03 03 03 03 03 03 03 03 03 03
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-03 4.91e-4 -03 6.00e-4 -03 5.79e-4 -03 3.55e-4 -03 5.26e-4 -03 5.01e-4 -03 2.91e-4 -03 1.54e-4 -03 1.43e-4	3 3.93e-0 3 3.93e-0 3 4.82e-0 3 3.85e-0 3 3.28e-0 3 3.29e-0 3 3.29e-0 3 3.84e-0 3 1.98e-0 3 1.55e-0 3 1.47e-0 3 1.46e-0	3 3.93e-0 3 3.36e-0 3 3.45e-0 3 3.45e-0 3 3.45e-0 3 2.88e-0 3 2.06e-0 3 1.72e-0 3 1.57e-0 3 1.57e-0 3 1.57e-0	stream 3 4.75e-0 3 3.73e-0 3 5.04e-0 3 5.04e-0 3 4.97e-0 3 2.57e-0 3 1.68e-0 3 1.66e-0 3 1.65e-0 3 1.63e-0 3 1.63e-0	$\begin{array}{c} \text{wise direct}\\ \hline 3 & 4.98e{-}0\\ \hline 3 & 4.40e{-}0\\ \hline 3 & 5.18e{-}0\\ \hline 3 & 5.61e{-}0\\ \hline 3 & 5.61e{-}0\\ \hline 3 & 5.61e{-}0\\ \hline 3 & 1.90e{-}0\\ \hline 3 & 1.76e{-}0\\ \hline 3 & 1.76e{-}0\\ \hline 3 & 1.74e{-}0\\ \hline 3 & 1.74e{-}0\\ \hline 3 & 1.74e{-}0\\ \hline \end{array}$	$\begin{array}{cccc} \text{tion} \leftarrow \\ \underline{3} & 4.62\text{e-}0 \\ \underline{3} & 3.73\text{e-}0 \\ \underline{3} & 4.99\text{e-}0 \\ \underline{3} & 5.60\text{e-}0 \\ \underline{3} & 5.60\text{e-}0 \\ \underline{3} & 2.45\text{e-}0 \\ \underline{3} & 1.98\text{e-}0 \\ \underline{3} & 1.91\text{e-}0 \\ \underline{3} & 1.89\text{e-}0 \end{array}$	3 4.16e-(3 2.75e-(3 3.96e-(3 3.85e-(3 2.22e-(3 2.11e-(3 2.08e-(3 2.07e-(3 2.07e-(3 2.07e-(3 2.07e-(03 2.25e-0 03 2.23e-0 03 2.28e-0 03 2.26e-0 03 2.26e-0 03 2.31e-0 03 2.26e-0 03 2.26e-0 03 2.26e-0 03 2.29e-0 03 2.26e-0	3 2.43e-(3 2.41e-(3 2.43e-(3 2.43e-(3 2.41e-(3 2.50e-(3 2.44e-(3 2.47e-(3 2.47e-(3 2.45e-(3 2.45e-(3 2.45e-(03 2.67e 03 2.65e 03 2.68e 03 2.65e	im 03 2.79e- 03 2.79e- 03 2.83e- 03 2.82e- 03 2.82e- 03 2.82e- 03 2.86e- 03 2.87e- 03 2.87e- 03 2.87e- 03 2.87e- 03 2.85e-	let 03 03 03 03 03 03 03 03 03 03 03 03 03
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-03 4.91e-4 -03 6.00e-4 -03 5.79e-4 -03 3.55e-4 -03 5.26e-4 -03 5.01e-4 -03 1.54e-4 -03 1.43e-4 -03 1.41e-4	3 3.93e-0 3 3.93e-0 3 4.82e-0 3 3.85e-0 3 3.28e-0 3 3.29e-0 3 3.29e-0 3 3.84e-0 3 1.98e-0 3 1.55e-0 3 1.47e-0 3 1.46e-0 3 1.46e-0	3 3.93e-0 3 3.36e-0 3 3.45e-0 3 3.45e-0 3 3.45e-0 3 3.45e-0 3 2.88e-0 3 2.06e-0 3 1.72e-0 3 1.57e-0 3 1.57e-0 3 1.57e-0 3 1.57e-0	stream 3 4.75e-0 3 3.73e-0 3 5.04e-0 3 5.04e-0 3 4.97e-0 3 2.57e-0 3 1.66e-0 3 1.66e-0 3 1.65e-0 3 1.63e-0 3 1.63e-0 3 1.42e-0	$\begin{array}{c c} \text{wise direc}\\\hline 3 & \underline{4.98e-0}\\ \hline 3 & \underline{4.40e-0}\\ \hline 3 & \underline{5.18e-0}\\ \hline 3 & \underline{5.61e-0}\\ \hline 3 & \underline{5.61e-0}\\ \hline 3 & \underline{1.90e-0}\\ \hline 3 & \underline{1.76e-0}\\ \hline 3 & \underline{1.74e-0}\\ \hline 3 & \underline{1.74e-0}\\ \hline 3 & \underline{1.74e-0}\\ \hline 3 & \underline{1.52e-0}\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3 4.16e-(3 2.75e-(3 3.96e-(3 3.85e-(3 2.22e-(3 2.11e-(3 2.08e-(3 2.07e-(03 2.25e-(03 2.23e-(03 2.28e-(03 2.26e-(03 2.26e-(03 2.31e-(03 2.26e-(03 2.26e-(03 2.26e-(03 2.29e-(03 2.26e-(03 2.26e-(3 2.43e-(3 2.41e-(3 2.43e-(3 2.43e-(3 2.41e-(3 2.41e-(3 2.41e-(3 2.41e-(3 2.42e-(3 2.45e-(3 2.45e-(3 2.45e-(3 2.45e-(3 2.45e-(3 2.45e-()3 2.67e)3 2.65e)3 2.68e)3 2.65e)3 2.63e	im 03 2.79e- 03 2.79e- 03 2.83e- 03 2.78e- 03 2.82e- 03 2.88e- 03 2.88e- 03 2.87e- 03 2.87e- 03 2.87e- 03 2.87e- 03 2.87e- 03 2.87e- 03 2.85e- 03 2.85e- 03 2.87e-	let 03 03 03 03 03 03 03 03 03 03
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-03 4.91e-4 -03 6.00e-4 -03 5.79e-4 -03 3.55e-4 -03 5.26e-4 -03 5.01e-4 -03 1.54e-4 -03 1.43e-4 -03 1.41e-4 -03 1.41e-4 -03 1.41e-4	3 3.93e-0 3 3.93e-0 3 4.82e-0 3 3.85e-0 3 3.28e-0 3 3.29e-0 3 3.29e-0 3 3.84e-0 03 1.98e-0 03 1.55e-0 03 1.47e-0 03 1.46e-0 03 1.46e-0 03 1.46e-0 03 1.46e-0	3 3.93e-0 3 3.36e-0 3 3.45e-0 3 3.45e-0 3 3.45e-0 3 3.45e-0 3 2.88e-0 3 2.06e-0 3 1.72e-0 3 1.57e-0 3 1.57e-0 3 1.57e-0 3 1.57e-0 3 1.57e-0 3 1.57e-0	stream 3 4.75e-0 3 3.73e-0 3 5.04e-0 3 5.04e-0 3 2.57e-0 3 1.66e-0 3 1.66e-0 3 1.65e-0 3 1.63e-0 3 1.65e-0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3 4.16e-0 3 2.75e-0 3 3.96e-0 3 3.85e-0 3 2.22e-0 3 2.11e-0 3 2.08e-0 3 2.07e-0 3 2.07e-0	03 2.25e-(03 2.23e-(03 2.28e-(03 2.26e-(03 2.30e-(3 2.43e-(3 2.41e-(3 2.43e-(3 2.43e-(3 2.41e-(3 2.41e-(3 2.45e-(3 2.47e-(3 2.45e-(3 2.45e-()3 2.67e)3 2.65e)3 2.68e)3 2.65e)3 2.64e)3 2.63e)3 2.63e)3 2.63e	im 03 2.79e- 03 2.79e- 03 2.83e- 03 2.78e- 03 2.82e- 03 2.88e- 03 2.88e- 03 2.87e- 03 2.87e-	let 03 03 03 03 03 03 03 03 03 03

TABLE 26. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 4.0$: Depth averaged turbulent kinetic energy. The value for the cells containing the turbines have been underlined

_

_

	down	stream					strea	am wise	direction	\leftarrow				
1		1.1616	1.4326	1.4598	1.4877	1.5163	1.5458	1.5758	1.6062	1.6369	1.6676	1.6978	1.7264	1.7507
2		1.2891	1.5675	1.5979	1.6305	1.6656	1.7032	1.7433	1.7850	1.8258	1.8596	1.8716	1.8272	1.6650
3		1.2090	1.4958	1.5273	1.5603	1.5949	1.6312	1.6693	1.7092	1.7507	1.7932	1.8352	1.8738	1.9022
4		1.2074	1.4852	1.5177	1.5517	1.5866	1.6219	1.6569	1.6903	1.7203	1.7441	1.7572	1.7529	1.7237
5		1.2860	1.4858	1.5096	1.5347	1.5609	1.5881	1.6161	1.6445	1.6729	1.7008	1.7269	1.7480	1.7563
6		1.3667	1.5401	1.5625	1.5869	1.6135	1.6421	1.6722	1.7023	1.7291	1.7451	1.7329	1.6533	1.4467
$\overline{7}$		1.2034	1.3322	1.3471	1.3629	1.3793	1.3964	1.4140	1.4315	1.4482	1.4620	1.4721	1.4702	1.4592
8		1.0440	1.1407	1.1445	1.1487	1.1538	1.1575	1.1591	1.1578	1.1527	1.1357	1.1189	1.0954	1.0662
9		0.8855	0.9068	0.9088	0.9104	0.9116	0.9123	0.9126	0.8961	0.8963	0.9087	0.9117	0.9163	0.9225
10		0.7979	0.8665	0.8724	0.8785	0.8850	0.8919	0.8992	0.9071	0.9157	0.9064	0.9163	0.9270	0.9380
11		0.7351	0.8124	0.8198	0.8275	0.8355	0.8438	0.8524	0.8613	0.8706	0.8805	0.8907	0.9015	0.9124
12		0.7253	0.8103	0.8181	0.8262	0.8344	0.8429	0.8518	0.8609	0.8703	0.8803	0.8906	0.9014	0.9123
13		0.7303	0.8143	0.8220	0.8298	0.8379	0.8463	0.8550	0.8640	0.8733	0.8831	0.8933	0.9040	0.9149
					s	tream w	ise direct	tion \leftarrow					inlet	
	1	1.7690	1.6998	1.5296	1.4334	1.5634	1.2464	0.9777	0.8792	1.0707	1.0988	1.1356	1.0821	_
	2	1.2751	0.7883	1.2021	1.3087	1.4826	1.5900	1.4238	1.2391	1.0956	1.1146	1.1550	1.1241	
	3	1.9153	1.8306	1.5213	1.3178	1.5708	1.3558	1.1112	1.0654	1.1484	1.1751	1.1858	1.1922	
	4	1.6478	1.4639	1.3781	1.3590	1.6359	1.7112	1.6653	1.4536	1.1317	1.1453	1.1782	1.1140	
	5	1.7422	1.6240	1.3350	1.1865	1.2306	1.2682	1.1652	1.0969	1.0610	1.0364	1.0838	1.0648	
	6	1.0369	0.5776	0.9080	1.0325	1.0934	1.0718	1.0648	1.0648	1.1182	1.1698	1.1925	1.2160	
	7	1.4219	1.2393	1.0602	0.9810	0.9930	1.0029	1.0224	1.0435	1.0522	1.0690	1.1056	1.1514	:
	8	1.0310	0.9954	0.9948	0.9737	0.9885	0.9871	1.0076	1.0316	1.0934	1.1188	1.1457	1.1747	
	9	0.9415	0.9539	0.9626	0.9682	0.9721	0.9873	1.0077	1.0302	1.0506	1.0736	1.1047	1.1675	
	10	0.9247	0.0303	0.0460	0.0636	0.9723	0.9875	1.0080	1.0307	1.0518	1.0754	1.0941	1.1170	1
	10	0.0411	0.0000	0.3403	0.3030	0.5120	0.0010		1.000.					
	11	0.9244	0.9393	0.9409 0.9469	0.9000	0.37248	0.7346	0.7506	0.7707	0.7927	0.8227	0.9995	1.1512	
	10 11 12	0.9244 0.9244	0.9393 0.9393 0.9395	0.9409 0.9469 0.9472	0.9030 0.9706 0.9657	0.57248 0.9979	0.7346 1.0384	0.7506 1.0601	0.7707 1.0837	$0.7927 \\ 1.1055$	$0.8227 \\ 1.1286$	$0.9995 \\ 1.1570$	1.1512 1.1950	

TABLE 27. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 4.0$: Depth averaged turbulent viscosity. The value for the cells containing the turbines have been underlined

3.3.3. Tip speed ratio $\gamma = 4.5$. Figure 33 shows mosaic plots of the binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity. The bin containing the upstream hubs are at (2.1,0.0) while the downstream hubs are at (0.0,0.0) and it is easily identifiable in the velocity plot showing the expected velocity deficit associated with the flow passing the turbine face. It should be noted that the centre upstream hub lies on the symmetry plane and so only half the rotor plane is used in the simulation. Tables 28 to 30 present the binned mean values with the bin containing the turbine nacelle underlined.

FIGURE 33. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 4.5$: Mosaic plots showing binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity.

	down	stream					strea	am wise	direction	\leftarrow				
1		0.3872	0.3883	0.3887	0.3891	0.3897	0.3904	0.3912	0.3922	0.3934	0.3947	0.3963	0.3983	0.4001
2		0.3836	0.3746	0.3730	0.3710	0.3686	0.3657	0.3621	0.3576	0.3517	0.3437	0.3327	0.3176	0.2991
3		0.3792	0.3741	0.3735	0.3728	0.3721	0.3713	0.3705	0.3695	0.3684	0.3669	0.3650	0.3627	0.3597
4		0.3879	0.3861	0.3866	0.3873	0.3882	0.3895	0.3912	0.3935	0.3965	0.4006	0.4065	0.4146	0.4252
5		0.3967	0.3904	0.3899	0.3894	0.3888	0.3882	0.3874	0.3864	0.3850	0.3833	0.3809	0.3773	0.3728
6		0.4084	0.3950	0.3928	0.3901	0.3870	0.3832	0.3785	0.3727	0.3652	0.3556	0.3428	0.3263	0.3085
7		0.4313	0.4280	0.4277	0.4274	0.4269	0.4263	0.4259	0.4255	0.4252	0.4258	0.4264	0.4290	0.4327
8		0.4576	0.4625	0.4634	0.4645	0.4655	0.4667	0.4683	0.4705	0.4731	0.4772	0.4815	0.4872	0.4930
9		0.4801	0.4878	0.4885	0.4892	0.4899	0.4906	0.4913	0.4920	0.4926	0.4936	0.4939	0.4941	0.4938
10		0.4883	0.4921	0.4923	0.4924	0.4924	0.4925	0.4924	0.4924	0.4923	0.4911	0.4908	0.4904	0.4891
11		0.4865	0.4884	0.4885	0.4885	0.4884	0.4883	0.4881	0.4880	0.4877	0.4874	0.4870	0.4861	0.4845
12		0.4850	0.4863	0.4863	0.4862	0.4861	0.4859	0.4857	0.4855	0.4850	0.4845	0.4840	0.4826	0.4809
13		0.4809	0.4813	0.4811	0.4809	0.4806	0.4802	0.4798	0.4792	0.4784	0.4775	0.4763	0.4747	0.4729
							• 1•						• 1 •	
					S	tream w	ise direct	$tion \leftarrow$					inlet	
	1	0.4009	0.3998	0.4044	0.4093	0.3878	1se direct 0.3164	$\frac{100}{0.3666}$	0.3976	0.4307	0.4384	0.4442	0.4432	
	$\frac{1}{2}$	$0.4009 \\ 0.2860$	0.3998 <u>0.3263</u>	$0.4044 \\ 0.3859$		$\frac{\text{tream w}}{0.3878}$ 0.4324	$\frac{0.3164}{0.4331}$	$\frac{100}{0.3666}$ 0.4537	$0.3976 \\ 0.4487$	$0.4307 \\ 0.4386$	$0.4384 \\ 0.4429$	$0.4442 \\ 0.4466$	0.4432 0.4457	
	$\frac{1}{2}$	$\begin{array}{r} 0.4009 \\ 0.2860 \\ 0.3551 \end{array}$	$\begin{array}{r} 0.3998 \\ \underline{0.3263} \\ 0.3571 \end{array}$	$\begin{array}{r} 0.4044 \\ 0.3859 \\ 0.3852 \end{array}$	0.4093 0.4206 0.4049	$ \begin{array}{r} \text{tream w} \\ \hline 0.3878 \\ 0.4324 \\ 0.3482 \end{array} $		$tion \leftarrow 0.3666 \\ 0.4537 \\ 0.3436$	$\begin{array}{r} 0.3976 \\ 0.4487 \\ 0.3946 \end{array}$	$\begin{array}{r} 0.4307 \\ 0.4386 \\ 0.4346 \end{array}$	$\begin{array}{r} 0.4384 \\ 0.4429 \\ 0.4444 \end{array}$	$\begin{array}{r} 0.4442 \\ 0.4466 \\ 0.4474 \end{array}$	0.4432 0.4457 0.4475	
	$\frac{1}{2}$ $\frac{3}{4}$	$\begin{array}{r} 0.4009 \\ 0.2860 \\ 0.3551 \\ 0.4398 \end{array}$	$\begin{array}{r} 0.3998 \\ \underline{0.3263} \\ 0.3571 \\ 0.4449 \end{array}$	$\begin{array}{r} 0.4044 \\ 0.3859 \\ 0.3852 \\ 0.4126 \end{array}$	0.4093 0.4206 0.4049 0.4011	$ \begin{array}{r} $			$\begin{array}{r} 0.3976 \\ 0.4487 \\ 0.3946 \\ 0.3932 \end{array}$	$\begin{array}{r} 0.4307 \\ 0.4386 \\ 0.4346 \\ 0.4380 \end{array}$	$\begin{array}{r} 0.4384 \\ 0.4429 \\ 0.4444 \\ 0.4442 \end{array}$	$\begin{array}{r} 0.4442 \\ 0.4466 \\ 0.4474 \\ 0.4473 \end{array}$	0.4432 0.4457 0.4475 0.4445	· ·
	$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	$\begin{array}{r} 0.4009 \\ 0.2860 \\ 0.3551 \\ 0.4398 \\ 0.3661 \end{array}$	$\begin{array}{r} 0.3998\\ \underline{0.3263}\\ 0.3571\\ 0.4449\\ 0.3725\end{array}$	$\begin{array}{r} 0.4044 \\ 0.3859 \\ 0.3852 \\ 0.4126 \\ 0.4015 \end{array}$	0.4093 0.4206 0.4049 0.4011 0.4246	$\begin{array}{r} \hline 0.3878 \\ 0.4324 \\ 0.3482 \\ 0.3670 \\ 0.4498 \end{array}$	$\begin{array}{r} \underline{0.3164}\\ 0.4331\\ \underline{0.3127}\\ 0.3476\\ 0.4573 \end{array}$		$\begin{array}{r} 0.3976 \\ 0.4487 \\ 0.3946 \\ 0.3932 \\ 0.4649 \end{array}$	$\begin{array}{r} 0.4307 \\ 0.4386 \\ 0.4346 \\ 0.4380 \\ 0.4481 \end{array}$	$\begin{array}{r} 0.4384 \\ 0.4429 \\ 0.4444 \\ 0.4442 \\ 0.4469 \end{array}$	$\begin{array}{r} 0.4442 \\ 0.4466 \\ 0.4474 \\ 0.4473 \\ 0.4480 \end{array}$	0.4432 0.4457 0.4475 0.4475 0.4445 0.4478	· · ·
	$\begin{array}{c}1\\2\\3\\4\\5\\6\end{array}$	$\begin{array}{c} 0.4009\\ 0.2860\\ 0.3551\\ 0.4398\\ 0.3661\\ 0.3033\end{array}$	$\begin{array}{r} 0.3998\\ \underline{0.3263}\\ 0.3571\\ 0.4449\\ 0.3725\\ \underline{0.3540} \end{array}$	$\begin{array}{c} 0.4044\\ 0.3859\\ 0.3852\\ 0.4126\\ 0.4015\\ 0.4125\end{array}$	$\begin{array}{r} & \\ & 0.4093 \\ & 0.4206 \\ & 0.4049 \\ & 0.4011 \\ & 0.4246 \\ & 0.4538 \end{array}$	$\begin{array}{r} \hline 0.3878\\ 0.4324\\ 0.3482\\ 0.3670\\ 0.4498\\ 0.4647 \end{array}$	$\begin{array}{r} \underline{0.3164}\\ 0.4331\\ \underline{0.3127}\\ 0.3476\\ 0.4573\\ 0.4769 \end{array}$	$\begin{array}{r} \text{tion} \leftarrow \\ \hline 0.3666 \\ 0.4537 \\ 0.3436 \\ 0.3575 \\ 0.4719 \\ 0.4775 \end{array}$	$\begin{array}{r} 0.3976\\ 0.4487\\ 0.3946\\ 0.3932\\ 0.4649\\ 0.4665\end{array}$	$\begin{array}{c} 0.4307\\ 0.4386\\ 0.4346\\ 0.4380\\ 0.4380\\ 0.4481\\ 0.4526\end{array}$	$\begin{array}{c} 0.4384\\ 0.4429\\ 0.4444\\ 0.4442\\ 0.4469\\ 0.4508\end{array}$	$\begin{array}{c} 0.4442\\ 0.4466\\ 0.4474\\ 0.4473\\ 0.4480\\ 0.4504\end{array}$	0.4432 0.4457 0.4475 0.4475 0.4445 0.4478 0.4478	<u>.</u>
	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	$\begin{array}{c} 0.4009\\ 0.2860\\ 0.3551\\ 0.4398\\ 0.3661\\ 0.3033\\ 0.4404 \end{array}$	$\begin{array}{c} 0.3998\\ \underline{0.3263}\\ 0.3571\\ 0.4449\\ 0.3725\\ \underline{0.3540}\\ 0.4607\end{array}$	$\begin{array}{c} 0.4044\\ 0.3859\\ 0.3852\\ 0.4126\\ 0.4015\\ 0.4125\\ 0.4598\end{array}$	s 0.4093 0.4206 0.4049 0.4011 0.4246 0.4538 0.4662	$\begin{array}{c} \text{tream w}\\ \hline 0.3878\\ 0.4324\\ 0.3482\\ 0.3670\\ 0.4498\\ 0.4647\\ 0.4694 \end{array}$	$\begin{array}{c} \underline{0.3164}\\ 0.4331\\ \underline{0.3127}\\ 0.3476\\ 0.4573\\ 0.4769\\ 0.4722 \end{array}$	$\begin{array}{c} \text{tion} \leftarrow \\ 0.3666 \\ 0.4537 \\ 0.3436 \\ 0.3575 \\ 0.4719 \\ 0.4775 \\ 0.4699 \end{array}$	$\begin{array}{c} 0.3976\\ 0.4487\\ 0.3946\\ 0.3932\\ 0.4649\\ 0.4665\\ 0.4633\end{array}$	$\begin{array}{c} 0.4307\\ 0.4386\\ 0.4386\\ 0.4380\\ 0.4481\\ 0.4526\\ 0.4547\end{array}$	$\begin{array}{c} 0.4384\\ 0.4429\\ 0.4442\\ 0.4442\\ 0.4469\\ 0.4508\\ 0.4513\end{array}$	$\begin{array}{c} 0.4442\\ 0.4466\\ 0.4474\\ 0.4473\\ 0.4480\\ 0.4504\\ 0.4502\end{array}$	0.4432 0.4457 0.4455 0.4475 0.4445 0.4478 0.4501 0.4499	
	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	$\begin{array}{c} 0.4009\\ 0.2860\\ 0.3551\\ 0.4398\\ 0.3661\\ 0.3033\\ 0.4404\\ 0.4973\end{array}$	$\begin{array}{c} 0.3998\\ \underline{0.3263}\\ 0.3571\\ 0.4449\\ 0.3725\\ \underline{0.3540}\\ 0.4607\\ 0.4901 \end{array}$	$\begin{array}{c} 0.4044\\ 0.3859\\ 0.3852\\ 0.4126\\ 0.4015\\ 0.4125\\ 0.4598\\ 0.4796\end{array}$	$\begin{array}{c} & & \\ & 0.4093 \\ & 0.4206 \\ & 0.4049 \\ & 0.4011 \\ & 0.4246 \\ & 0.4538 \\ & 0.4662 \\ & 0.4715 \end{array}$	$\begin{array}{c} \text{tream w}\\ \hline 0.3878\\ 0.4324\\ 0.3482\\ 0.3670\\ 0.4498\\ 0.4647\\ 0.4694\\ 0.4694\end{array}$	$\begin{array}{c} \underline{\text{0.3164}}\\ \underline{0.3164}\\ 0.4331\\ \underline{0.3127}\\ 0.3476\\ 0.4573\\ 0.4769\\ 0.4769\\ 0.4722\\ 0.4685 \end{array}$	$\begin{array}{r} \text{tion} \leftarrow \\ 0.3666 \\ 0.4537 \\ 0.3436 \\ 0.3575 \\ 0.4719 \\ 0.4775 \\ 0.4699 \\ 0.4656 \end{array}$	$\begin{array}{c} 0.3976\\ 0.4487\\ 0.3946\\ 0.3932\\ 0.4649\\ 0.4665\\ 0.4663\\ 0.4609\end{array}$	$\begin{array}{c} 0.4307\\ 0.4386\\ 0.4386\\ 0.4380\\ 0.4380\\ 0.4481\\ 0.4526\\ 0.4547\\ 0.4553\end{array}$	$\begin{array}{c} 0.4384\\ 0.4429\\ 0.4442\\ 0.4442\\ 0.4469\\ 0.4508\\ 0.4513\\ 0.4522\end{array}$	$\begin{array}{c} 0.4442\\ 0.4466\\ 0.4474\\ 0.4473\\ 0.4473\\ 0.4480\\ 0.4504\\ 0.4502\\ 0.4507\end{array}$	$\begin{array}{c} \text{inlet} \\ 0.4432 \\ 0.4457 \\ 0.4457 \\ 0.4475 \\ 0.4445 \\ 0.4478 \\ 0.4501 \\ 0.4500 \\ 0.4500 \end{array}$	i
	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \end{array} $	$\begin{array}{c} 0.4009\\ 0.2860\\ 0.3551\\ 0.4398\\ 0.3661\\ 0.3033\\ 0.4404\\ 0.4973\\ 0.4919\end{array}$	$\begin{array}{c} 0.3998\\ \underline{0.3263}\\ 0.3571\\ 0.4449\\ 0.3725\\ \underline{0.3540}\\ 0.4607\\ 0.4901\\ 0.4847\end{array}$	$\begin{array}{c} 0.4044\\ 0.3859\\ 0.3852\\ 0.4126\\ 0.4015\\ 0.4125\\ 0.4598\\ 0.4796\\ 0.4795\end{array}$	$\begin{array}{c} & & \\ & 0.4093 \\ & 0.4206 \\ & 0.4049 \\ & 0.4011 \\ & 0.4246 \\ & 0.4538 \\ & 0.4662 \\ & 0.4715 \\ & 0.4710 \end{array}$	$\begin{array}{c} \text{tream w}\\ \hline 0.3878\\ 0.4324\\ 0.3482\\ 0.3670\\ 0.4498\\ 0.4647\\ 0.4694\\ 0.4694\\ 0.4682\end{array}$	$\begin{array}{c} \underline{0.3164}\\ 0.3164\\ 0.4331\\ \underline{0.3127}\\ 0.3476\\ 0.4573\\ 0.4769\\ 0.4722\\ 0.4685\\ 0.4661 \end{array}$	$\begin{array}{c} \text{tion} \leftarrow \\ 0.3666 \\ 0.4537 \\ 0.3436 \\ 0.3575 \\ 0.4719 \\ 0.4775 \\ 0.4699 \\ 0.4656 \\ 0.4631 \end{array}$	$\begin{array}{c} 0.3976\\ 0.4487\\ 0.3946\\ 0.3932\\ 0.4649\\ 0.4665\\ 0.4663\\ 0.4609\\ 0.4593\end{array}$	$\begin{array}{c} 0.4307\\ 0.4386\\ 0.4386\\ 0.4380\\ 0.4481\\ 0.4526\\ 0.4526\\ 0.4553\\ 0.4553\\ 0.4545\end{array}$	$\begin{array}{c} 0.4384\\ 0.4429\\ 0.4442\\ 0.4442\\ 0.4469\\ 0.4508\\ 0.4513\\ 0.4522\\ 0.4518\end{array}$	$\begin{array}{c} 0.4442\\ 0.4466\\ 0.4474\\ 0.4473\\ 0.4480\\ 0.4504\\ 0.4502\\ 0.4507\\ 0.4504\end{array}$	$\begin{array}{c} \text{inlet}\\ 0.4432\\ 0.4457\\ 0.4457\\ 0.4475\\ 0.4445\\ 0.4478\\ 0.4501\\ 0.4499\\ 0.4500\\ 0.4500\end{array}$	
	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	$\begin{array}{c} 0.4009\\ 0.2860\\ 0.3551\\ 0.4398\\ 0.3661\\ 0.3033\\ 0.4404\\ 0.4973\\ 0.4919\\ 0.4856\end{array}$	$\begin{array}{c} 0.3998\\ \underline{0.3263}\\ 0.3571\\ 0.4449\\ 0.3725\\ \underline{0.3540}\\ 0.4607\\ 0.4901\\ 0.4847\\ 0.4798\end{array}$	$\begin{array}{c} 0.4044\\ 0.3859\\ 0.3852\\ 0.4126\\ 0.4015\\ 0.4125\\ 0.4125\\ 0.4598\\ 0.4796\\ 0.4795\\ 0.4761\end{array}$	$\begin{array}{c} & \\ & 0.4093 \\ & 0.4206 \\ & 0.4049 \\ & 0.4011 \\ & 0.4246 \\ & 0.4538 \\ & 0.4662 \\ & 0.4715 \\ & 0.4710 \\ & 0.4696 \end{array}$	$\begin{array}{c} \text{tream w}\\ \hline 0.3878\\ 0.4324\\ 0.3482\\ 0.3670\\ 0.4498\\ 0.4647\\ 0.4694\\ 0.4694\\ 0.4682\\ 0.4667\end{array}$	$\begin{array}{c} \underline{0.3164}\\ 0.3127\\ 0.3427\\ 0.3476\\ 0.4573\\ 0.4769\\ 0.4722\\ 0.4685\\ 0.4661\\ 0.4638\\ \end{array}$	$\begin{array}{c} \text{tion} \leftarrow \\ 0.3666 \\ 0.4537 \\ 0.3436 \\ 0.3575 \\ 0.4719 \\ 0.4775 \\ 0.4699 \\ 0.4656 \\ 0.4631 \\ 0.4608 \end{array}$	$\begin{array}{c} 0.3976\\ 0.4487\\ 0.3946\\ 0.3932\\ 0.4649\\ 0.4665\\ 0.4633\\ 0.4609\\ 0.4593\\ 0.4577\end{array}$	$\begin{array}{c} 0.4307\\ 0.4386\\ 0.4386\\ 0.4380\\ 0.4481\\ 0.4526\\ 0.4547\\ 0.4553\\ 0.4545\\ 0.4545\\ 0.4540\end{array}$	$\begin{array}{c} 0.4384\\ 0.4429\\ 0.4442\\ 0.4442\\ 0.4469\\ 0.4508\\ 0.4513\\ 0.4522\\ 0.4518\\ 0.4517\end{array}$	$\begin{array}{c} 0.4442\\ 0.4466\\ 0.4474\\ 0.4473\\ 0.4480\\ 0.4504\\ 0.4502\\ 0.4502\\ 0.4504\\ 0.4504\\ 0.4504\end{array}$	$\begin{array}{c} \text{inlet}\\ 0.4432\\ 0.4457\\ 0.4457\\ 0.4475\\ 0.4478\\ 0.4501\\ 0.4499\\ 0.4500\\ 0.4500\\ 0.4500\\ 0.4498\end{array}$	
	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{array} $	$\begin{array}{c} 0.4009\\ 0.2860\\ 0.3551\\ 0.4398\\ 0.3661\\ 0.3033\\ 0.4404\\ 0.4973\\ 0.4919\\ 0.4856\\ 0.4820\\ \end{array}$	$\begin{array}{c} 0.3998\\ \underline{0.3263}\\ 0.3571\\ 0.4449\\ 0.3725\\ \underline{0.3540}\\ 0.4607\\ 0.4901\\ 0.4847\\ 0.4798\\ 0.4771\end{array}$	$\begin{array}{c} 0.4044\\ 0.3859\\ 0.3852\\ 0.4126\\ 0.4015\\ 0.4125\\ 0.4598\\ 0.4796\\ 0.4795\\ 0.4761\\ 0.4741\\ \end{array}$	$\begin{array}{c} & \\ & 0.4093 \\ & 0.4206 \\ & 0.4049 \\ & 0.4011 \\ & 0.4246 \\ & 0.4538 \\ & 0.4662 \\ & 0.4715 \\ & 0.4710 \\ & 0.4696 \\ & 0.4689 \end{array}$	$\begin{array}{c} \text{tream w}\\ \hline 0.3878\\ 0.4324\\ 0.3482\\ 0.3670\\ 0.4498\\ 0.4647\\ 0.4694\\ 0.4694\\ 0.4682\\ 0.4667\\ 0.4589 \end{array}$	$\begin{array}{c} \underline{0.3164}\\ 0.4331\\ \underline{0.3127}\\ 0.3476\\ 0.4573\\ 0.4769\\ 0.4769\\ 0.4722\\ 0.4685\\ 0.4661\\ 0.4638\\ 0.4566\end{array}$	$\begin{array}{c} \text{tion} \leftarrow \\ 0.3666 \\ 0.4537 \\ 0.3436 \\ 0.3575 \\ 0.4719 \\ 0.4775 \\ 0.4699 \\ 0.4656 \\ 0.4631 \\ 0.4608 \\ 0.4542 \end{array}$	$\begin{array}{c} 0.3976\\ 0.4487\\ 0.3946\\ 0.3932\\ 0.4649\\ 0.4665\\ 0.4663\\ 0.4609\\ 0.4593\\ 0.4577\\ 0.4521\end{array}$	$\begin{array}{c} 0.4307\\ 0.4386\\ 0.4386\\ 0.4380\\ 0.4481\\ 0.4526\\ 0.4547\\ 0.4553\\ 0.4545\\ 0.4545\\ 0.4540\\ 0.4497\end{array}$	$\begin{array}{c} 0.4384\\ 0.4429\\ 0.4442\\ 0.4442\\ 0.4469\\ 0.4508\\ 0.4513\\ 0.4522\\ 0.4518\\ 0.4517\\ 0.4484\end{array}$	$\begin{array}{c} 0.4442\\ 0.4466\\ 0.4474\\ 0.4473\\ 0.4473\\ 0.4480\\ 0.4504\\ 0.4504\\ 0.4504\\ 0.4504\\ 0.4504\\ 0.4491\end{array}$	$\begin{array}{c} \text{inlet}\\ 0.4432\\ 0.4457\\ 0.4457\\ 0.4475\\ 0.4478\\ 0.4501\\ 0.4499\\ 0.4500\\ 0.4500\\ 0.4500\\ 0.4498\\ 0.4498\\ 0.4498\end{array}$	
	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $	$\begin{array}{c} 0.4009\\ 0.2860\\ 0.3551\\ 0.4398\\ 0.3661\\ 0.3033\\ 0.4404\\ 0.4973\\ 0.4919\\ 0.4856\\ 0.4820\\ 0.4785\end{array}$	$\begin{array}{c} 0.3998\\ \underline{0.3263}\\ 0.3571\\ 0.4449\\ 0.3725\\ \underline{0.3540}\\ 0.4607\\ 0.4901\\ 0.4847\\ 0.4798\\ 0.4771\\ 0.4743\end{array}$	$\begin{array}{c} 0.4044\\ 0.3859\\ 0.3852\\ 0.4126\\ 0.4015\\ 0.4125\\ 0.4598\\ 0.4796\\ 0.4795\\ 0.4761\\ 0.4761\\ 0.4719\end{array}$	$\begin{array}{c} & \\ & 0.4093 \\ & 0.4206 \\ & 0.4049 \\ & 0.4011 \\ & 0.4246 \\ & 0.4538 \\ & 0.4662 \\ & 0.4715 \\ & 0.4710 \\ & 0.4696 \\ & 0.4689 \\ & 0.4671 \end{array}$	$\begin{array}{c} \text{tream w}\\ \hline 0.3878\\ 0.4324\\ 0.3482\\ 0.3670\\ 0.4498\\ 0.4647\\ 0.4694\\ 0.4694\\ 0.4682\\ 0.4667\\ 0.4589\\ 0.4656\end{array}$	$\begin{array}{c} \underline{0.3164}\\ 0.4331\\ \underline{0.3127}\\ 0.3476\\ 0.4573\\ 0.4769\\ 0.4722\\ 0.4685\\ 0.4661\\ 0.4638\\ 0.4566\\ 0.4628 \end{array}$	$\begin{array}{r} \text{tion} \leftarrow \\ 0.3666 \\ 0.4537 \\ 0.3436 \\ 0.3575 \\ 0.4719 \\ 0.4775 \\ 0.4699 \\ 0.4656 \\ 0.4631 \\ 0.4608 \\ 0.4542 \\ 0.4599 \end{array}$	$\begin{array}{c} 0.3976\\ 0.4487\\ 0.3946\\ 0.3932\\ 0.4649\\ 0.4665\\ 0.4663\\ 0.4609\\ 0.4593\\ 0.4577\\ 0.4521\\ 0.4572\end{array}$	$\begin{array}{c} 0.4307\\ 0.4386\\ 0.4386\\ 0.4380\\ 0.4481\\ 0.4526\\ 0.4547\\ 0.4553\\ 0.4545\\ 0.4545\\ 0.4540\\ 0.4497\\ 0.4541\end{array}$	$\begin{array}{c} 0.4384\\ 0.4429\\ 0.4442\\ 0.4442\\ 0.4469\\ 0.4508\\ 0.4513\\ 0.4522\\ 0.4518\\ 0.4517\\ 0.4484\\ 0.4521\\ \end{array}$	$\begin{array}{c} 0.4442\\ 0.4466\\ 0.4474\\ 0.4473\\ 0.4473\\ 0.4504\\ 0.4504\\ 0.4502\\ 0.4507\\ 0.4504\\ 0.4504\\ 0.4504\\ 0.4508\end{array}$	$\begin{array}{c} \text{inlet}\\ 0.4432\\ 0.4457\\ 0.4457\\ 0.4475\\ 0.4445\\ 0.4501\\ 0.4501\\ 0.4500\\ 0.4500\\ 0.4498\\ 0.4498\\ 0.4501\end{array}$	

TABLE 28. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 4.5$: Depth averaged velocity magnitude. The value for the cells containing the turbines have been underlined

	downstrea	ım				st	ream wise o	direction ϵ	_				
1	1.25e-	03 2.27e-03	2.43e-03	2.61e-03	2.82e-03	3.05e-03	3.31e-03	3.60e-03	3.93e-03	4.31e-03	4.73e-03	5.20e-03	5.68e-03
2	1.35e-	03 2.51e-03	2.70e-03	2.93e-03	3.19e-03	3.49e-03	3.84e-03	4.25e-03	4.73e-03	5.28e-03	5.91e-03	6.56e-03	7.10e-03
3	1.30e-	03 2.40e-03	2.59e-03	2.80e-03	3.04 e- 03	3.32e-03	3.64e-03	4.01e-03	4.45e-03	4.96e-03	5.55e-03	6.21 e- 03	6.89e-03
4	1.29e-	03 2.35e-03	2.53e-03	2.72e-03	2.94e-03	3.18e-03	3.44e-03	3.72e-03	4.02e-03	4.32e-03	4.61e-03	4.85e-03	4.98e-03
5	1.39e-	03 2.42e-03	2.59e-03	2.79e-03	3.02e-03	3.29e-03	3.59e-03	3.94e-03	4.35e-03	4.82e-03	5.37e-03	5.98e-03	6.60e-03
6	1.51e-	03 2.60e-03	2.78e-03	3.00e-03	3.24e-03	3.53e-03	3.86e-03	4.25e-03	4.69e-03	5.20e-03	5.74e-03	6.27 e- 03	6.64 e- 03
7	1.47e-	03 2.39e-03	2.54e-03	2.71e-03	2.90e-03	3.11e-03	3.35e-03	3.62e-03	3.92e-03	4.25e-03	4.59e-03	4.89e-03	5.13e-03
8	1.24e-	03 1.85e-03	1.92e-03	1.99e-03	2.08e-03	2.16e-03	2.24e-03	2.30e-03	2.35e-03	2.34e-03	2.31e-03	2.21e-03	2.03e-03
9	8.43e-	04 1.03e-03	1.05e-03	1.06e-03	1.08e-03	1.10e-03	1.12e-03	1.11e-03	1.13e-03	1.16e-03	1.20e-03	1.23e-03	1.28e-03
10	6.62e-	04 8.67e-04	8.91e-04	9.18e-04	9.47 e- 04	9.78e-04	1.01e-03	1.05e-03	1.09e-03	1.12e-03	1.17e-03	1.22e-03	1.28e-03
11	6.19e-	04 8.23e-04	8.49e-04	8.76e-04	9.06e-04	9.38e-04	9.72 e- 04	1.01e-03	1.05e-03	1.10e-03	1.14e-03	1.20e-03	1.25e-03
12	6.13e-	04 8.19e-04	8.44e-04	8.72e-04	9.02e-04	9.34e-04	9.69e-04	1.01e-03	1.05e-03	1.09e-03	1.14e-03	1.19e-03	1.25e-03
13	6.05e-	04 8.10e-04	8.36e-04	8.64e-04	8.94e-04	9.26e-04	9.61e-04	9.99e-04	1.04e-03	1.09e-03	1.13e-03	1.19e-03	1.25e-03
					stream	wise direc	tion \leftarrow					in	let
	1 6.1	7 09 505	09 4 70 - 0	0 4 51 0	a F at a	a a ta a							
	1 0.1	7e-03 5.85e-	03 4.70e-0	3 4.71e-0	5.81e-0	3 <u>6.46e-0</u>	6.08e-0	4.67e-0	2.25e-0	2.43e-0	2.67e-	03 2.79e-	03
	2 7.4	7e-03 5.85e- 8e-03 <u>7.41e-</u>	$03 ext{ 4.70e-0} \\ 03 ext{ 5.56e-0} \\ 03 ext{ 5.56e-0} \\ 03 ext{ 6.56e-0} \\ 03 $	3 4.71e-0 3 3.96e-0	3 5.81e-0 3 4.43e-0	$\frac{6.46e-0}{3}$ 3 5.26e-0	$\frac{13}{13}$ 6.08e-0 13 4.39e-0	03 4.67e-0 03 3.02e-0)3 2.25e-0)3 2.23e-0)3 2.43e-()3 2.41e-()3 2.67e-)3 2.65e-(03 2.79e- 03 2.79e-	03 03
	$ \begin{array}{ccc} 2 & 7.4 \\ 3 & 7.5 \end{array} $	7e-03 5.85e- 8e-03 <u>7.41e-</u> 51e-03 6.78e-	$\begin{array}{ccc} 03 & 4.70e{-}0\\ \underline{03} & 5.56e{-}0\\ 03 & 4.52e{-}0 \end{array}$	3 4.71e-0 3 3.96e-0 3 4.03e-0	13 5.81e-0 13 4.43e-0 13 6.16e-0	$\begin{array}{rrrr} 3 & \underline{6.46e-0} \\ 3 & 5.26e-0 \\ 3 & \underline{6.54e-0} \end{array}$	$\begin{array}{ccc} \underline{3} & 6.08e\text{-}0 \\ \underline{3} & 4.39e\text{-}0 \\ \underline{3} & 6.44e\text{-}0 \end{array}$	03 4.67e-0 03 3.02e-0 03 4.57e-0)3 2.25e-0)3 2.23e-0)3 2.28e-0	03 2.43e-0 03 2.41e-0 03 2.46e-0)3 2.67e-)3 2.65e-)3 2.68e-	03 2.79e- 03 2.79e- 03 2.83e-	03 03 03
	$ \begin{array}{cccc} 2 & 7.4 \\ 3 & 7.5 \\ 4 & 4.8 \end{array} $	1/e-03 5.85e- 8e-03 7.41e- 51e-03 6.78e- 68e-03 4.19e-	$\begin{array}{cccc} 03 & 4.70e{-}0\\ \underline{03} & 5.56e{-}0\\ 03 & 4.52e{-}0\\ 03 & 3.81e{-}0 \end{array}$	3 4.71e-0 3 3.96e-0 3 4.03e-0 3 4.02e-0	13 5.81e-0 13 4.43e-0 13 6.16e-0 13 5.94e-0	$\begin{array}{rrrr} 3 & \underline{6.46e-0} \\ 3 & 5.26e-0 \\ 3 & \underline{6.54e-0} \\ 3 & 6.77e-0 \end{array}$	$\begin{array}{rrrr} \underline{3} & 6.08e-0 \\ \underline{3} & 4.39e-0 \\ \underline{3} & 6.44e-0 \\ \underline{3} & 6.79e-0 \end{array}$	 4.67e-0 3.02e-0 4.57e-0 4.47e-0)3 2.25e-0)3 2.23e-0)3 2.28e-0)3 2.28e-0)3 2.27e-0	03 2.43e-(03 2.41e-(03 2.46e-(03 2.43e-()3 2.67e-)3 2.65e-)3 2.68e-)3 2.68e-	03 2.79e- 03 2.79e- 03 2.83e- 03 2.78e-	03 03 03 03
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/e-03 5.85e- 8e-03 7.41e- 61e-03 6.78e- 68e-03 4.19e- 5e-03 6.37e-	$\begin{array}{rrrr} 0.3 & 4.70e{-}0\\ 0.3 & 5.56e{-}0\\ 0.3 & 4.52e{-}0\\ 0.3 & 3.81e{-}0\\ 0.3 & 3.83e{-}0\end{array}$	3 4.71e-0 3 3.96e-0 3 4.03e-0 3 4.02e-0 3 3.30e-0	3 5.81e-0 3 4.43e-0 3 6.16e-0 3 5.94e-0 3 2.94e-0	3 6.46e-0 3 5.26e-0 3 6.54e-0 3 6.77e-0 3 3.23e-0	3 6.08e-0 3 4.39e-0 3 6.44e-0 3 6.79e-0 3 2.68e-0	03 4.67e-0 03 3.02e-0 03 4.57e-0 03 4.47e-0 03 2.28e-0	03 2.25e-0 03 2.23e-0 03 2.28e-0 03 2.27e-0 03 2.26e-0	03 2.43e-0 03 2.41e-0 03 2.46e-0 03 2.43e-0 03 2.43e-0 03 2.41e-0)3 2.67e-1)3 2.65e-1)3 2.68e-1)3 2.68e-1)3 2.68e-1)3 2.65e-1	03 2.79e- 03 2.79e- 03 2.83e- 03 2.78e- 03 2.82e- 03 2.82e-	03 03 03 03 03 03
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7e-03 5.85e- .8e-03 7.41e- i1e-03 6.78e- .8e-03 4.19e- .5e-03 6.37e- .9e-03 6.15e-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4.71e-0 3 3.96e-0 3 4.03e-0 3 4.02e-0 3 3.30e-0 3 2.25e-0	3 5.81e-0 3 4.43e-0 3 6.16e-0 3 5.94e-0 3 2.94e-0 3 2.00e-0	3 6.46e-0 3 5.26e-0 3 6.54e-0 3 6.77e-0 3 3.23e-0 3 1.97e-0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4.67e-(3 3.02e-(3 4.57e-(3 4.47e-(3 2.28e-(3 2.12e-(03 2.25e-0 03 2.23e-0 03 2.28e-0 03 2.27e-0 03 2.26e-0 03 2.26e-0 03 2.32e-0	3 2.43e-(3 2.41e-(3 2.46e-(3 2.43e-(3 2.43e-(3 2.43e-(3 2.41e-(3 2.50e-()3 2.67e)3 2.65e)3 2.68e)3 2.68e)3 2.65e)3 2.65e)3 2.65e)3 2.65e	03 2.79e- 03 2.79e- 03 2.83e- 03 2.78e- 03 2.82e- 03 2.82e- 03 2.88e-	03 03 03 03 03 03 03
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7e-03 $5.85e$ $8e-03$ $7.41e$ $i1e-03$ $6.78e$ $8e-03$ $4.19e$ $5e-03$ $6.37e$ $9e-03$ $6.15e$ $1e-03$ $3.52e$	03 4.70e-0 03 5.56e-0 03 4.52e-0 03 3.81e-0 03 3.83e-0 03 4.24e-0 03 2.18e-0	3 4.71e-0 3 3.96e-0 3 4.03e-0 3 4.02e-0 3 3.30e-0 3 2.25e-0 3 1.79e-0	3 5.81e-0 3 4.43e-0 3 6.16e-0 3 5.94e-0 3 2.94e-0 3 2.00e-0 3 1.67e-0	3 <u>6.46e-0</u> 3 5.26e-0 3 <u>6.54e-0</u> 3 <u>6.77e-0</u> 3 <u>3.23e-0</u> 3 1.97e-0 3 1.77e-0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4.67e-0 3 3.02e-0 3 4.57e-0 3 4.47e-0 3 2.28e-0 3 2.12e-0 3 2.09e-0	03 2.25e-0 03 2.23e-0 03 2.28e-0 03 2.27e-0 03 2.26e-0 03 2.32e-0 03 2.26e-0 03 2.26e-0	3 2.43e-(3 2.41e-(3 2.46e-(3 2.43e-(3 2.43e-(3 2.41e-(3 2.50e-(3 2.44e-()3 2.67e)3 2.65e)3 2.68e)3 2.68e)3 2.65e)3 2.65e)3 2.69e)3 2.65e	03 2.79e- 03 2.79e- 03 2.83e- 03 2.78e- 03 2.82e- 03 2.82e- 03 2.88e- 03 2.88e- 03 2.88e- 03 2.88e-	03 03 03 03 03 03 03 03
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7e-03 $5.85e$ $8e-03$ $7.41e$ $i1e-03$ $6.78e$ $8e-03$ $4.19e$ $5e-03$ $6.37e$ $9e-03$ $6.15e$ $1e-03$ $3.52e$ $8e-03$ $1.59e$	03 4.70e-0 03 5.56e-0 03 4.52e-0 03 3.81e-0 03 3.83e-0 03 4.24e-0 03 2.18e-0 03 1.58e-0	3 4.71e-0 3 3.96e-0 3 4.03e-0 3 4.02e-0 3 3.30e-0 3 2.25e-0 3 1.79e-0 3 1.58e-0	3 5.81e-0 3 4.43e-0 3 6.16e-0 3 5.94e-0 3 2.94e-0 3 2.00e-0 3 1.67e-0 3 1.65e-0	3 6.46e-0 3 5.26e-0 3 6.54e-0 3 6.77e-0 3 3.23e-0 3 1.97e-0 3 1.77e-0 3 1.77e-0 3 1.75e-0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4.67e-0 3 3.02e-0 3 4.57e-0 3 4.57e-0 3 2.28e-0 3 2.12e-0 3 2.09e-0 3 2.07e-0	03 2.25e-0 03 2.23e-0 03 2.28e-0 03 2.27e-0 03 2.26e-0 03 2.32e-0 03 2.26e-0 03 2.26e-0 03 2.26e-0 03 2.26e-0 03 2.26e-0	3 2.43e-() 3 2.41e-() 3 2.46e-() 3 2.43e-() 3 2.41e-() 3 2.41e-() 3 2.50e-() 3 2.44e-() 3 2.44e-() 3 2.47e-())3 2.67e-1)3 2.65e-1)3 2.68e-1)3 2.65e-1	03 2.79e- 03 2.79e- 03 2.83e- 03 2.78e- 03 2.82e- 03 2.88e- 03 2.88e- 03 2.86e- 03 2.86e- 03 2.87e-	03 03 03 03 03 03 03 03 03 03
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7e-03 $5.85e$ $8e-03$ $7.41e$ $51e-03$ $6.78e$ $8e-03$ $4.19e$ $5e-03$ $6.37e$ $9e-03$ $6.15e$ $1e-03$ $3.52e$ $8e-03$ $1.59e$ $8e-03$ $1.59e$ $8e-03$ $1.43e$	03 4.70e-0 03 5.56e-0 03 4.52e-0 03 3.81e-0 03 3.83e-0 03 4.24e-0 03 2.18e-0 03 1.58e-0 03 1.48e-0	3 4.71e-0 3 3.96e-0 3 4.03e-0 3 4.02e-0 3 3.30e-0 3 2.25e-0 3 1.79e-0 3 1.58e-0 3 1.57e-0	3 5.81e-0 3 4.43e-0 3 6.16e-0 3 5.94e-0 3 2.94e-0 3 2.00e-0 3 1.67e-0 3 1.65e-0 3 1.64e-0	3 6.46e-0 3 5.26e-0 3 6.54e-0 3 6.77e-0 3 3.23e-0 3 1.97e-0 3 1.77e-0 3 1.75e-0 3 1.75e-0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4.67e-(3 3.02e-(3 4.57e-(3 4.47e-(3 2.28e-(3 2.12e-(3 2.09e-(3 2.07e-(3 2.07e-(33 2.25e-0 33 2.23e-0 33 2.28e-0 33 2.27e-0 33 2.26e-0 33 2.26e-0 33 2.26e-0 33 2.26e-0 33 2.29e-0 33 2.29e-0 33 2.26e-0	3 2.43e-(3 2.41e-(3 2.46e-(3 2.43e-(3 2.41e-(3 2.50e-(3 2.44e-(3 2.44e-(3 2.47e-(3 2.47e-(3 2.47e-(3 2.67e 3 2.65e 3 2.68e 3 2.68e 3 2.65e	03 2.79e- 03 2.79e- 03 2.83e- 03 2.78e- 03 2.82e- 03 2.82e- 03 2.88e- 03 2.86e- 03 2.87e- 03 2.87e- 03 2.87e-	03 03 03 03 03 03 03 03 03 03 03 03
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7e-03 $5.85e$ $8e-03$ $7.41e$ $61e-03$ $6.78e$ $8e-03$ $4.19e$ $5e-03$ $6.37e$ $9e-03$ $6.15e$ $1e-03$ $3.52e$ $8e-03$ $1.59e$ $8e-03$ $1.59e$ $8e-03$ $1.43e$ $2e-03$ $1.42e$	03 4.70e-0 03 5.56e-0 03 4.52e-0 03 3.81e-0 03 3.83e-0 03 4.24e-0 03 2.18e-0 03 1.58e-0 03 1.48e-0 03 1.46e-0	3 4.71e-0 3 3.96e-0 3 4.03e-0 3 4.02e-0 3 3.30e-0 3 2.25e-0 3 1.79e-0 3 1.58e-0 3 1.57e-0 3 1.57e-0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 6.46e-0 3 5.26e-0 3 6.54e-0 3 6.77e-0 3 3.23e-0 3 1.97e-0 3 1.77e-0 3 1.77e-0 3 1.75e-0 3 1.75e-0 3 1.75e-0 3 1.74e-0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4.67e-(3 3.02e-(3 4.57e-(3 4.57e-(3 2.28e-(3 2.12e-(3 2.09e-(3 2.07e-(3 2.07e-(3 2.07e-(3 2.07e-(33 2.25e-0 33 2.23e-0 33 2.28e-0 33 2.27e-0 33 2.26e-0 33 2.26e-0 33 2.26e-0 33 2.29e-0 33 2.26e-0	3 2.43e-(3 2.41e-(3 2.46e-(3 2.43e-(3 2.41e-(3 2.50e-(3 2.44e-(3 2.47e-(3 2.47e-(3 2.45e-(3 2.45e-(3 2.45e-(3 2.67e 3 2.65e 3 2.68e 3 2.68e 3 2.65e	03 2.79e- 03 2.79e- 03 2.83e- 03 2.78e- 03 2.82e- 03 2.82e- 03 2.88e- 03 2.86e- 03 2.87e- 03 2.87e- 03 2.87e- 03 2.87e- 03 2.87e- 03 2.87e-	03 03 03 03 03 03 03 03 03 03 03 03 03 0
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7e-03 $5.85e$ $8e-03$ $7.41e$ $51e-03$ $6.78e$ $8e-03$ $4.19e$ $5e-03$ $6.37e$ $9e-03$ $6.15e$ $1e-03$ $3.52e$ $8e-03$ $1.59e$ $8e-03$ $1.59e$ $5e-03$ $1.43e$ $2e-03$ $1.42e$	03 4.76e-0 03 5.56e-0 03 4.52e-0 03 3.81e-0 03 3.83e-0 03 4.24e-0 03 2.18e-0 03 1.58e-0 03 1.48e-0 03 1.46e-0 03 1.46e-0	3 4.71e-0 3 3.96e-0 3 4.03e-0 3 4.02e-0 3 3.30e-0 3 2.25e-0 3 1.79e-0 3 1.58e-0 3 1.57e-0 3 1.57e-0 3 1.57e-0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 6.46e-0 3 5.26e-0 3 5.26e-0 3 6.54e-0 3 6.77e-0 3 3.23e-0 3 1.97e-0 3 1.77e-0 3 1.75e-0 3 1.75e-0 3 1.74e-0 3 1.52e-0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4.67e-(3 3.02e-(3 4.57e-(3 4.57e-(3 2.28e-(3 2.12e-(3 2.09e-(3 2.07e-(33 2.25e-0 33 2.23e-0 33 2.28e-0 33 2.27e-0 33 2.26e-0 33 2.32e-0 33 2.26e-0 33 2.26e-0	3 2.43e-(3 2.41e-(3 2.46e-(3 2.43e-(3 2.41e-(3 2.50e-(3 2.44e-(3 2.47e-(3 2.47e-(3 2.45e-(3 2.45e-(3 2.45e-(3 2.45e-(3 2.45e-(3 2.67e 3 2.65e 3 2.68e 3 2.65e 3 2.63e 3 2.63e	03 2.79e- 03 2.79e- 03 2.83e- 03 2.78e- 03 2.82e- 03 2.88e- 03 2.86e- 03 2.87e- 03 2.85e- 03 2.87e-	03 03 03 03 03 03 03 03 03 03 03 03 03 0
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7e-03 $5.85e$ $8e-03$ $7.41e$ $11e-03$ $6.78e$ $8e-03$ $4.19e$ $5e-03$ $6.37e$ $9e-03$ $6.15e$ $1e-03$ $3.52e$ $8e-03$ $1.59e$ $8e-03$ $1.59e$ $5e-03$ $1.43e$ $2e-03$ $1.42e$ $2e-03$ $1.41e$	03 4.76e-0 03 5.56e-0 03 4.52e-0 03 3.81e-0 03 3.83e-0 03 4.24e-0 03 2.18e-0 03 1.58e-0 03 1.46e-0 03 1.46e-0 03 1.46e-0 03 1.46e-0	3 4.71e-0 3 3.96e-0 3 4.03e-0 3 4.02e-0 3 3.30e-0 3 2.25e-0 3 1.79e-0 3 1.58e-0 3 1.57e-0 3 1.57e-0 3 1.57e-0 3 1.57e-0 3 1.57e-0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 6.46e-0 3 5.26e-0 3 5.26e-0 3 6.54e-0 3 6.77e-0 3 3.23e-0 3 1.97e-0 3 1.77e-0 3 1.77e-0 3 1.75e-0 3 1.75e-0 3 1.75e-0 3 1.75e-0 3 1.74e-0 3 1.52e-0 3 1.79e-0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4.67e-(3 3.02e-(3 4.57e-(3 4.57e-(3 2.28e-(3 2.12e-(3 2.09e-(3 2.07e-(3 2.07e-(33 2.25e-0 33 2.23e-0 33 2.28e-0 33 2.27e-0 33 2.26e-0 33 2.36e-0 33 2.30e-0	33 2.43e-(33 2.41e-(33 2.46e-(33 2.43e-(33 2.50e-(33 2.44e-(33 2.47e-(33 2.47e-(33 2.45e-(34 2.45e-(35 2.45e-(3 2.67e 3 2.65e 3 2.68e 3 2.65e 3 2.64e 3 2.63e 3 2.63e 3 2.63e	03 2.79e- 03 2.79e- 03 2.83e- 03 2.78e- 03 2.82e- 03 2.88e- 03 2.88e- 03 2.87e- 03 2.87e-	03 03 03 03 03 03 03 03 03 03 03 03 03 0

TABLE 29. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 4.5$: Depth averaged turbulent kinetic energy. The value for the cells containing the turbines have been underlined

_

_

	down	stream					strea	am wise	direction	\leftarrow				
1		1.2423	1.5405	1.5713	1.6033	1.6366	1.6710	1.7065	1.7428	1.7797	1.8170	1.8538	1.8885	1.9169
2		1.3707	1.6730	1.7065	1.7424	1.7811	1.8231	1.8686	1.9170	1.9667	2.0124	2.0407	2.0180	1.8752
3		1.2833	1.5923	1.6271	1.6639	1.7026	1.7436	1.7870	1.8329	1.8811	1.9309	1.9809	2.0269	2.0588
4		1.2844	1.5821	1.6187	1.6574	1.6978	1.7396	1.7818	1.8232	1.8616	1.8937	1.9142	1.9146	1.8854
5		1.3681	1.5847	1.6123	1.6418	1.6731	1.7062	1.7406	1.7760	1.8119	1.8477	1.8818	1.9097	1.9195
6		1.4542	1.6396	1.6650	1.6932	1.7244	1.7587	1.7959	1.8353	1.8743	1.9067	1.9172	1.8676	1.6869
7		1.2763	1.4088	1.4255	1.4437	1.4630	1.4836	1.5052	1.5274	1.5494	1.5686	1.5842	1.5858	1.5751
8		1.1005	1.1937	1.1975	1.2019	1.2075	1.2114	1.2128	1.2104	1.2040	1.1832	1.1613	1.1298	1.0916
9		0.9165	0.9269	0.9282	0.9290	0.9291	0.9287	0.9279	0.9098	0.9086	0.9190	0.9204	0.9233	0.9279
10		0.8132	0.8760	0.8813	0.8868	0.8926	0.8988	0.9055	0.9126	0.9205	0.9100	0.9195	0.9297	0.9402
11		0.7415	0.8160	0.8232	0.8307	0.8385	0.8465	0.8549	0.8637	0.8729	0.8825	0.8926	0.9032	0.9139
12		0.7284	0.8125	0.8203	0.8282	0.8364	0.8448	0.8536	0.8626	0.8720	0.8819	0.8921	0.9028	0.9135
13		0.7317	0.8156	0.8232	0.8311	0.8391	0.8474	0.8561	0.8651	0.8744	0.8841	0.8942	0.9049	0.9156
					s	stream w	ise direct	tion \leftarrow					inlet	,
	1	1.9363	1.8629	1.6711	1.5607	tream w 1.7135	ise direct <u>1.5244</u>	$ \begin{array}{l} \text{tion} \leftarrow \\ 1.1189 \end{array} $	0.9378	1.0716	1.0989	1.1356	inlet 1.0821	;
	$\frac{1}{2}$	$1.9363 \\ 1.4655$	1.8629 0.8824	1.6711 1.3129	s 1.5607 1.4086	stream w 1.7135 1.5990	ise direct <u>1.5244</u> 1.7113	$\begin{array}{l} \text{tion} \leftarrow \\ 1.1189 \\ 1.5202 \end{array}$	0.9378 1.2892	1.0716 1.0954	1.0989 1.1142	$1.1356 \\ 1.1549$	inlet 1.0821 1.1241	- -
	$\frac{1}{2}$	$ 1.9363 \\ 1.4655 \\ 2.0639 $	$ \begin{array}{r} 1.8629 \\ \underline{0.8824} \\ 1.9734 \end{array} $	$ 1.6711 \\ 1.3129 \\ 1.6446 $		stream w 1.7135 1.5990 1.7652	ise direct <u>1.5244</u> 1.7113 <u>1.6034</u>	$ \begin{array}{r} \text{tion} \leftarrow \\ 1.1189 \\ 1.5202 \\ 1.2632 \end{array} $	$ \begin{array}{r} 0.9378 \\ 1.2892 \\ 1.1418 \end{array} $	1.0716 1.0954 1.1495	$ 1.0989 \\ 1.1142 \\ 1.1753 $	$ 1.1356 \\ 1.1549 \\ 1.1859 $	inlet 1.0821 1.1241 1.1923	; ;
	$\begin{array}{c} 1\\ 2\\ 3\\ 4 \end{array}$	$ 1.9363 \\ 1.4655 \\ 2.0639 \\ 1.8003 $	$ 1.8629 \\ 0.8824 \\ 1.9734 \\ 1.5841 $	$1.6711 \\ 1.3129 \\ 1.6446 \\ 1.4747$	1.5607 1.4086 1.4122 1.4497	stream w 1.7135 1.5990 1.7652 1.7821	$ ise direct \frac{1.5244}{1.7113} \underline{1.6034} 1.8678 $		$0.9378 \\ 1.2892 \\ 1.1418 \\ 1.5458$	$ 1.0716 \\ 1.0954 \\ 1.1495 \\ 1.1328 $	$ 1.0989 \\ 1.1142 \\ 1.1753 \\ 1.1455 $	$ 1.1356 \\ 1.1549 \\ 1.1859 \\ 1.1783 $	inlet 1.0821 1.1241 1.1923 1.1141	;
	$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	$ 1.9363 \\ 1.4655 \\ 2.0639 \\ 1.8003 \\ 1.8913 $	$ \begin{array}{r} 1.8629 \\ \underline{0.8824} \\ 1.9734 \\ 1.5841 \\ 1.7539 \end{array} $	$1.6711 \\ 1.3129 \\ 1.6446 \\ 1.4747 \\ 1.4193$	$ \begin{array}{r} & \\ & 1.5607 \\ & 1.4086 \\ & 1.4122 \\ & 1.4497 \\ & 1.2457 \end{array} $	tream w 1.7135 1.5990 1.7652 1.7821 1.2917	$\begin{array}{r} \text{ise direct} \\ \hline 1.5244 \\ 1.7113 \\ \hline 1.6034 \\ 1.8678 \\ 1.3314 \end{array}$		$\begin{array}{r} 0.9378 \\ 1.2892 \\ 1.1418 \\ 1.5458 \\ 1.1112 \end{array}$	$ 1.0716 \\ 1.0954 \\ 1.1495 \\ 1.1328 \\ 1.0616 $	$ 1.0989 \\ 1.1142 \\ 1.1753 \\ 1.1455 \\ 1.0365 $	$ \begin{array}{r} 1.1356\\ 1.1549\\ 1.1859\\ 1.1783\\ 1.0838 \end{array} $	inlet 1.0821 1.1241 1.1923 1.1141 1.0647	; ;
	$\begin{array}{c}1\\2\\3\\4\\5\\6\end{array}$	$ \begin{array}{r} 1.9363 \\ 1.4655 \\ 2.0639 \\ 1.8003 \\ 1.8913 \\ 1.2498 \end{array} $	$ \begin{array}{r} 1.8629 \\ 0.8824 \\ 1.9734 \\ 1.5841 \\ 1.7539 \\ 0.6540 \\ \end{array} $	$\begin{array}{r} 1.6711 \\ 1.3129 \\ 1.6446 \\ 1.4747 \\ 1.4193 \\ 0.9522 \end{array}$	1.5607 1.4086 1.4122 1.4497 1.2457 1.0541		$\begin{array}{c} \text{ise direct} \\ \hline 1.5244 \\ 1.7113 \\ \hline 1.6034 \\ 1.8678 \\ 1.3314 \\ 1.0924 \end{array}$	$\begin{array}{l} \text{tion} \leftarrow \\ 1.1189 \\ 1.5202 \\ 1.2632 \\ 1.8018 \\ 1.2063 \\ 1.0759 \end{array}$	$\begin{array}{r} 0.9378 \\ 1.2892 \\ 1.1418 \\ 1.5458 \\ 1.1112 \\ 1.0671 \end{array}$	$\begin{array}{c} 1.0716\\ 1.0954\\ 1.1495\\ 1.1328\\ 1.0616\\ 1.1186\end{array}$	$\begin{array}{c} 1.0989\\ 1.1142\\ 1.1753\\ 1.1455\\ 1.0365\\ 1.1699\end{array}$	1.1356 1.1549 1.1859 1.1783 1.0838 1.1925	inlet 1.0821 1.1241 1.1923 1.1141 1.0647 1.2160	; ; ; ; ;
	$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\end{array}$	$\begin{array}{c} 1.9363\\ 1.4655\\ 2.0639\\ 1.8003\\ 1.8913\\ 1.2498\\ 1.5310\end{array}$	$\begin{array}{c} 1.8629\\ \underline{0.8824}\\ 1.9734\\ 1.5841\\ 1.7539\\ \underline{0.6540}\\ 1.3117\end{array}$	$\begin{array}{c} 1.6711\\ 1.3129\\ 1.6446\\ 1.4747\\ 1.4193\\ 0.9522\\ 1.0811 \end{array}$	s 1.5607 1.4086 1.4122 1.4497 1.2457 1.0541 0.9844	stream w 1.7135 1.5990 1.7652 1.7821 1.2917 1.1221 0.9972	$\begin{array}{c} \text{ise direct} \\ \hline 1.5244 \\ 1.7113 \\ \hline 1.6034 \\ 1.8678 \\ 1.3314 \\ 1.0924 \\ 1.0052 \end{array}$	$\begin{array}{l} \mbox{tion} \leftarrow \\ 1.1189 \\ 1.5202 \\ 1.2632 \\ 1.8018 \\ 1.2063 \\ 1.0759 \\ 1.0239 \end{array}$	$\begin{array}{c} 0.9378 \\ 1.2892 \\ 1.1418 \\ 1.5458 \\ 1.1112 \\ 1.0671 \\ 1.0442 \end{array}$	$\begin{array}{c} 1.0716\\ 1.0954\\ 1.1495\\ 1.1328\\ 1.0616\\ 1.1186\\ 1.0525\end{array}$	$\begin{array}{c} 1.0989\\ 1.1142\\ 1.1753\\ 1.1455\\ 1.0365\\ 1.1699\\ 1.0692\end{array}$	$\begin{array}{c} 1.1356 \\ 1.1549 \\ 1.1859 \\ 1.1783 \\ 1.0838 \\ 1.1925 \\ 1.1057 \end{array}$	inlet 1.0821 1.1241 1.1923 1.1141 1.0647 1.2160 1.1514	; ; ; ; ; ;
	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	$\begin{array}{c} 1.9363\\ 1.4655\\ 2.0639\\ 1.8003\\ 1.8913\\ 1.2498\\ 1.5310\\ 1.0483\end{array}$	$\begin{array}{r} 1.8629\\ \underline{0.8824}\\ 1.9734\\ 1.5841\\ 1.7539\\ \underline{0.6540}\\ 1.3117\\ 1.0018 \end{array}$	$\begin{array}{c} 1.6711\\ 1.3129\\ 1.6446\\ 1.4747\\ 1.4193\\ 0.9522\\ 1.0811\\ 0.9986\end{array}$	s 1.5607 1.4086 1.4122 1.4497 1.2457 1.0541 0.9844 0.9762	stream w 1.7135 1.5990 1.7652 1.7821 1.2917 1.1221 0.9972 0.9897	$\begin{array}{c} \text{ise direct} \\ \hline 1.5244 \\ 1.7113 \\ \hline 1.6034 \\ 1.8678 \\ 1.3314 \\ 1.0924 \\ 1.0052 \\ 0.9881 \end{array}$	$\begin{array}{l} \text{tion} \leftarrow \\ \hline 1.1189 \\ 1.5202 \\ 1.2632 \\ 1.8018 \\ 1.2063 \\ 1.0759 \\ 1.0239 \\ 1.0083 \end{array}$	0.9378 1.2892 1.1418 1.5458 1.1112 1.0671 1.0442 1.0321	$\begin{array}{c} 1.0716\\ 1.0954\\ 1.1495\\ 1.1328\\ 1.0616\\ 1.1186\\ 1.0525\\ 1.0937\end{array}$	$\begin{array}{c} 1.0989\\ 1.1142\\ 1.1753\\ 1.1455\\ 1.0365\\ 1.1699\\ 1.0692\\ 1.1189\end{array}$	$\begin{array}{c} 1.1356\\ 1.1549\\ 1.1859\\ 1.1783\\ 1.0838\\ 1.1925\\ 1.1057\\ 1.1458\end{array}$	inlet 1.0821 1.1241 1.1923 1.1141 1.0647 1.2160 1.1514 1.1747	;
	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \end{array} $	$\begin{array}{c} 1.9363\\ 1.4655\\ 2.0639\\ 1.8003\\ 1.8913\\ 1.2498\\ 1.5310\\ 1.0483\\ 0.9452\end{array}$	$\begin{array}{r} 1.8629\\ \underline{0.8824}\\ 1.9734\\ 1.5841\\ 1.7539\\ \underline{0.6540}\\ 1.3117\\ 1.0018\\ 0.9559\end{array}$	$\begin{array}{c} 1.6711\\ 1.3129\\ 1.6446\\ 1.4747\\ 1.4193\\ 0.9522\\ 1.0811\\ 0.9986\\ 0.9642\end{array}$	s 1.5607 1.4086 1.4122 1.4497 1.2457 1.0541 0.9844 0.9762 0.9692	stream w 1.7135 1.5990 1.7652 1.7821 1.2917 1.1221 0.9972 0.9897 0.9729	$\begin{array}{c} \text{ise direct} \\ \hline 1.5244 \\ 1.7113 \\ \hline 1.6034 \\ 1.8678 \\ 1.3314 \\ 1.0924 \\ 1.0052 \\ 0.9881 \\ 0.9880 \end{array}$	$\begin{array}{r} \text{tion} \leftarrow \\ \hline 1.1189 \\ 1.5202 \\ 1.2632 \\ 1.8018 \\ 1.2063 \\ 1.0759 \\ 1.0239 \\ 1.0083 \\ 1.0083 \end{array}$	$\begin{array}{c} 0.9378\\ 1.2892\\ 1.1418\\ 1.5458\\ 1.1112\\ 1.0671\\ 1.0442\\ 1.0321\\ 1.0305\end{array}$	$\begin{array}{c} 1.0716\\ 1.0954\\ 1.1495\\ 1.1328\\ 1.0616\\ 1.1186\\ 1.0525\\ 1.0937\\ 1.0508\end{array}$	$\begin{array}{c} 1.0989\\ 1.1142\\ 1.1753\\ 1.1455\\ 1.0365\\ 1.1699\\ 1.0692\\ 1.1189\\ 1.0737\end{array}$	$\begin{array}{c} 1.1356\\ 1.1549\\ 1.1859\\ 1.1783\\ 1.0838\\ 1.1925\\ 1.1057\\ 1.1458\\ 1.1048\end{array}$	inlet 1.0821 1.1241 1.1923 1.1141 1.0647 1.2160 1.1514 1.1747 1.1676	; ; ; ; ; ;
	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	$\begin{array}{c} 1.9363\\ 1.4655\\ 2.0639\\ 1.8003\\ 1.8913\\ 1.2498\\ 1.5310\\ 1.0483\\ 0.9452\\ 0.9264\end{array}$	$\begin{array}{r} 1.8629\\ \underline{0.8824}\\ 1.9734\\ 1.5841\\ 1.7539\\ \underline{0.6540}\\ 1.3117\\ 1.0018\\ 0.9559\\ 0.9404 \end{array}$	$\begin{array}{c} 1.6711\\ 1.3129\\ 1.6446\\ 1.4747\\ 1.4193\\ 0.9522\\ 1.0811\\ 0.9986\\ 0.9642\\ 0.9478\end{array}$	$\begin{array}{c} & \\ \hline 1.5607 \\ 1.4086 \\ 1.4122 \\ 1.4497 \\ 1.2457 \\ 1.0541 \\ 0.9844 \\ 0.9762 \\ 0.9692 \\ 0.9643 \end{array}$	stream w 1.7135 1.5990 1.7652 1.7821 1.2917 1.1221 0.9972 0.9897 0.9729 0.9729 0.9729	$\begin{array}{c} \text{ise direct} \\ \hline 1.5244 \\ 1.7113 \\ \hline 1.6034 \\ 1.8678 \\ 1.3314 \\ 1.0924 \\ 1.0052 \\ 0.9881 \\ 0.9880 \\ 0.9880 \\ 0.9880 \end{array}$	$\begin{array}{l} \text{tion} \leftarrow \\ 1.1189 \\ 1.5202 \\ 1.2632 \\ 1.8018 \\ 1.2063 \\ 1.0759 \\ 1.0239 \\ 1.0083 \\ 1.0083 \\ 1.0084 \end{array}$	$\begin{array}{c} 0.9378\\ 1.2892\\ 1.1418\\ 1.5458\\ 1.1112\\ 1.0671\\ 1.0442\\ 1.0321\\ 1.0305\\ 1.0310\end{array}$	$\begin{array}{c} 1.0716\\ 1.0954\\ 1.1495\\ 1.1328\\ 1.0616\\ 1.1186\\ 1.0525\\ 1.0937\\ 1.0508\\ 1.0520\end{array}$	$\begin{array}{c} 1.0989\\ 1.1142\\ 1.1753\\ 1.1455\\ 1.0365\\ 1.1699\\ 1.0692\\ 1.1189\\ 1.0737\\ 1.0755\end{array}$	$\begin{array}{c} 1.1356\\ 1.1549\\ 1.1859\\ 1.1783\\ 1.0838\\ 1.1925\\ 1.1057\\ 1.1458\\ 1.1048\\ 1.0942\end{array}$	inlet 1.0821 1.1241 1.1923 1.1141 1.0647 1.2160 1.1514 1.1747 1.1676 1.1170	; ; ; ; ; ; ; ; ;
	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{array} $	$\begin{array}{c} 1.9363\\ 1.4655\\ 2.0639\\ 1.8003\\ 1.8913\\ 1.2498\\ 1.5310\\ 1.0483\\ 0.9452\\ 0.9264\\ 0.9256\end{array}$	$\begin{array}{c} 1.8629\\ \underline{0.8824}\\ 1.9734\\ 1.5841\\ 1.7539\\ \underline{0.6540}\\ 1.3117\\ 1.0018\\ 0.9559\\ 0.9404\\ 0.9402 \end{array}$	$\begin{array}{c} 1.6711\\ 1.3129\\ 1.6446\\ 1.4747\\ 1.4193\\ 0.9522\\ 1.0811\\ 0.9986\\ 0.9642\\ 0.9478\\ 0.9477\end{array}$	$\begin{array}{c} & \\ & 1.5607 \\ 1.4086 \\ 1.4122 \\ 1.4497 \\ 1.2457 \\ 1.0541 \\ 0.9844 \\ 0.9762 \\ 0.9692 \\ 0.9643 \\ 0.9713 \end{array}$	stream w 1.7135 1.5990 1.7652 1.7821 1.2917 1.1221 0.9972 0.9897 0.9729 0.9729 0.9729 0.7251	$\begin{array}{c} \text{ise direct}\\ \hline 1.5244\\ 1.7113\\ \hline 1.6034\\ 1.8678\\ 1.3314\\ 1.0924\\ 1.0052\\ 0.9881\\ 0.9880\\ 0.9880\\ 0.7349 \end{array}$	$\begin{array}{l} \mbox{tion} \leftarrow \\ 1.1189 \\ 1.5202 \\ 1.2632 \\ 1.8018 \\ 1.2063 \\ 1.0759 \\ 1.0239 \\ 1.0083 \\ 1.0083 \\ 1.0084 \\ 0.7507 \end{array}$	$\begin{array}{c} 0.9378\\ 1.2892\\ 1.1418\\ 1.5458\\ 1.1112\\ 1.0671\\ 1.0442\\ 1.0321\\ 1.0305\\ 1.0310\\ 0.7708 \end{array}$	$\begin{array}{c} 1.0716\\ 1.0954\\ 1.1495\\ 1.1328\\ 1.0616\\ 1.1186\\ 1.0525\\ 1.0937\\ 1.0508\\ 1.0520\\ 0.7927\end{array}$	$\begin{array}{c} 1.0989\\ 1.1142\\ 1.1753\\ 1.1455\\ 1.0365\\ 1.1699\\ 1.0692\\ 1.1189\\ 1.0737\\ 1.0755\\ 0.8227\end{array}$	$\begin{array}{c} 1.1356\\ 1.1549\\ 1.1859\\ 1.1783\\ 1.0838\\ 1.1925\\ 1.1057\\ 1.1458\\ 1.1048\\ 1.0942\\ 0.9995\end{array}$	inlet 1.0821 1.1241 1.1923 1.1141 1.0647 1.2160 1.1514 1.1747 1.1676 1.1170 1.1512	; ; ; ; ; ; ; ; ; ; ; ; ;
	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $	$\begin{array}{c} 1.9363\\ 1.4655\\ 2.0639\\ 1.8003\\ 1.8913\\ 1.2498\\ 1.5310\\ 1.0483\\ 0.9452\\ 0.9264\\ 0.9256\\ 0.9254\end{array}$	$\begin{array}{c} 1.8629\\ \underline{0.8824}\\ 1.9734\\ 1.5841\\ 1.7539\\ \underline{0.6540}\\ 1.3117\\ 1.0018\\ 0.9559\\ 0.9404\\ 0.9402\\ 0.9403\end{array}$	$\begin{array}{c} 1.6711\\ 1.3129\\ 1.6446\\ 1.4747\\ 1.4193\\ 0.9522\\ 1.0811\\ 0.9986\\ 0.9642\\ 0.9478\\ 0.9477\\ 0.9479\end{array}$	$\begin{array}{c} & \\ \hline 1.5607 \\ 1.4086 \\ 1.4122 \\ 1.4497 \\ 1.2457 \\ 1.0541 \\ 0.9844 \\ 0.9762 \\ 0.9692 \\ 0.9643 \\ 0.9713 \\ 0.9663 \end{array}$	stream w 1.7135 1.5990 1.7652 1.7821 1.2917 1.1221 0.9972 0.9897 0.9729 0.9729 0.7251 0.9984	$\begin{array}{c} \text{ise direct}\\ \hline 1.5244\\ 1.7113\\ \hline 1.6034\\ 1.8678\\ 1.3314\\ 1.0924\\ 1.0052\\ 0.9881\\ 0.9880\\ 0.9880\\ 0.9880\\ 0.7349\\ 1.0389\end{array}$	$\begin{array}{r} \text{tion} \leftarrow \\ \hline 1.1189 \\ 1.5202 \\ 1.2632 \\ 1.8018 \\ 1.2063 \\ 1.0759 \\ 1.0239 \\ 1.0083 \\ 1.0083 \\ 1.0084 \\ 0.7507 \\ 1.0604 \end{array}$	$\begin{array}{c} 0.9378\\ 1.2892\\ 1.1418\\ 1.5458\\ 1.1112\\ 1.0671\\ 1.0442\\ 1.0321\\ 1.0305\\ 1.0310\\ 0.7708\\ 1.0839\end{array}$	$\begin{array}{c} 1.0716\\ 1.0954\\ 1.1495\\ 1.1328\\ 1.0616\\ 1.1186\\ 1.0525\\ 1.0937\\ 1.0508\\ 1.0520\\ 0.7927\\ 1.1056\end{array}$	$\begin{array}{c} 1.0989\\ 1.1142\\ 1.1753\\ 1.1455\\ 1.0365\\ 1.1699\\ 1.0692\\ 1.1189\\ 1.0737\\ 1.0755\\ 0.8227\\ 1.1287\end{array}$	$\begin{array}{c} 1.1356\\ 1.1549\\ 1.1859\\ 1.1783\\ 1.0838\\ 1.1925\\ 1.1057\\ 1.1458\\ 1.1048\\ 1.0942\\ 0.9995\\ 1.1571\end{array}$	$\begin{array}{r} \text{inlet} \\ 1.0821 \\ 1.1241 \\ 1.1923 \\ 1.1141 \\ 1.0647 \\ 1.2160 \\ 1.1514 \\ 1.1747 \\ 1.1676 \\ 1.1170 \\ 1.1512 \\ 1.1950 \end{array}$; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;

TABLE 30. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 4.5$: Depth averaged turbulent viscosity. The value for the cells containing the turbines have been underlined

3.3.4. Tip speed ratio $\gamma = 5.5$. Figure 34 shows mosaic plots of the binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity. The bin containing the upstream hubs are at (2.1,0.0) while the downstream hubs are at (0.0,0.0) and it is easily identifiable in the velocity plot showing the expected velocity deficit associated with the flow passing the turbine face. It should be noted that the centre upstream hub lies on the symmetry plane and so only half the rotor plane is used in the simulation. Tables 31 to 33 present the binned mean values with the bin containing the turbine nacelle underlined.

FIGURE 34. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 5.5$: Mosaic plots showing binned depth averaged velocity magnitude, turbulent kinetic energy and turbulent viscosity.

	dowr	stream					stream	am wise	direction	\leftarrow				
1		0.3950	0.3949	0.3952	0.3956	0.3961	0.3968	0.3977	0.3990	0.4006	0.4026	0.4051	0.4078	0.4105
2		0.3919	0.3875	0.3870	0.3865	0.3859	0.3852	0.3843	0.3832	0.3815	0.3789	0.3743	0.3660	0.3517
3		0.3847	0.3798	0.3793	0.3789	0.3785	0.3781	0.3777	0.3774	0.3771	0.3769	0.3767	0.3762	0.3749
4		0.3887	0.3826	0.3823	0.3821	0.3820	0.3821	0.3825	0.3833	0.3846	0.3867	0.3903	0.3961	0.4048
5		0.3952	0.3872	0.3866	0.3859	0.3853	0.3847	0.3842	0.3836	0.3830	0.3822	0.3811	0.3796	0.3776
6		0.4060	0.3967	0.3954	0.3940	0.3924	0.3905	0.3882	0.3851	0.3810	0.3751	0.3663	0.3529	0.3335
7		0.4241	0.4217	0.4217	0.4215	0.4212	0.4209	0.4205	0.4202	0.4198	0.4200	0.4200	0.4212	0.4238
8		0.4484	0.4520	0.4529	0.4537	0.4546	0.4557	0.4571	0.4591	0.4614	0.4653	0.4698	0.4764	0.4845
9		0.4732	0.4826	0.4837	0.4848	0.4860	0.4874	0.4888	0.4906	0.4921	0.4940	0.4950	0.4956	0.4953
10		0.4859	0.4921	0.4926	0.4930	0.4935	0.4939	0.4941	0.4943	0.4944	0.4932	0.4929	0.4921	0.4907
11		0.4866	0.4899	0.4900	0.4901	0.4902	0.4902	0.4902	0.4900	0.4898	0.4893	0.4888	0.4877	0.4860
12		0.4857	0.4877	0.4878	0.4878	0.4878	0.4877	0.4875	0.4872	0.4868	0.4862	0.4854	0.4841	0.4822
13		0.4815	0.4824	0.4822	0.4821	0.4819	0.4815	0.4811	0.4805	0.4797	0.4786	0.4773	0.4756	0.4737
					s	tream w	ise direct	tion \leftarrow					inlet	- ,
	1	0.4128	0.4117	0.4119	0.4168	$\frac{\text{tream w}}{0.4141}$	ise direct <u>0.4065</u>	$\frac{\text{tion} \leftarrow}{0.3831}$	0.3946	0.4285	0.4376	0.4441	inlet 0.4432	2
	$\frac{1}{2}$	0.4128 0.3226	0.4117 0.3092	$0.4119 \\ 0.3876$	0.4168 0.4066	$\frac{\text{tream w}}{0.4141}$ 0.4105	ise direct 0.4065 0.4134	$\frac{\text{tion} \leftarrow}{0.3831}\\0.4303$	$0.3946 \\ 0.4397$	$0.4285 \\ 0.4370$	$0.4376 \\ 0.4422$	$0.4441 \\ 0.4464$	inlet 0.4432 0.4457	7
	$\begin{array}{c}1\\2\\3\end{array}$	$\begin{array}{r} 0.4128 \\ 0.3226 \\ 0.3718 \end{array}$	$\begin{array}{r} 0.4117 \\ \underline{0.3092} \\ 0.3651 \end{array}$	$\begin{array}{r} 0.4119 \\ 0.3876 \\ 0.3857 \end{array}$	0.4168 0.4066 0.4011	$\frac{\text{tream w}}{0.4141}$ 0.4105 0.3863	ise direct 0.4065 0.4134 0.3672		$\begin{array}{r} 0.3946 \\ 0.4397 \\ 0.3932 \end{array}$	$\begin{array}{r} 0.4285 \\ 0.4370 \\ 0.4339 \end{array}$	$0.4376 \\ 0.4422 \\ 0.4441$	$0.4441 \\ 0.4464 \\ 0.4473$	inlet 0.4432 0.4457 0.4475	
	$\frac{1}{2}\\ 3\\ 4$	$\begin{array}{r} 0.4128 \\ 0.3226 \\ 0.3718 \\ 0.4207 \end{array}$	$\begin{array}{r} 0.4117\\ \underline{0.3092}\\ 0.3651\\ 0.4416\end{array}$	$\begin{array}{r} 0.4119 \\ 0.3876 \\ 0.3857 \\ 0.4177 \end{array}$	$\begin{array}{r} & \text{s} \\ \hline 0.4168 \\ 0.4066 \\ 0.4011 \\ 0.4050 \end{array}$		ise direct 0.4065 0.4134 <u>0.3672</u> 0.3703	$ \begin{array}{r} \text{tion} \leftarrow \\ \hline 0.3831 \\ 0.4303 \\ 0.3504 \\ 0.3602 \end{array} $	$\begin{array}{r} 0.3946 \\ 0.4397 \\ 0.3932 \\ 0.3923 \end{array}$	$\begin{array}{r} 0.4285 \\ 0.4370 \\ 0.4339 \\ 0.4383 \end{array}$	$\begin{array}{r} 0.4376 \\ 0.4422 \\ 0.4441 \\ 0.4442 \end{array}$	$\begin{array}{r} 0.4441 \\ 0.4464 \\ 0.4473 \\ 0.4473 \end{array}$	inlet 0.4432 0.4457 0.4475 0.4445	<u>;</u> ; ;
	$\begin{array}{c}1\\2\\3\\4\\5\end{array}$	$\begin{array}{r} 0.4128 \\ 0.3226 \\ 0.3718 \\ 0.4207 \\ 0.3738 \end{array}$	$\begin{array}{r} 0.4117\\ \underline{0.3092}\\ 0.3651\\ 0.4416\\ 0.3730\end{array}$	0.4119 0.3876 0.3857 0.4177 0.4008	0.4168 0.4066 0.4011 0.4050 0.4216		ise direct 0.4065 0.4134 0.3672 0.3703 0.4525	$\begin{array}{r} \text{tion} \leftarrow \\ \hline 0.3831 \\ 0.4303 \\ 0.3504 \\ 0.3602 \\ 0.4742 \end{array}$	$\begin{array}{r} 0.3946 \\ 0.4397 \\ 0.3932 \\ 0.3923 \\ 0.4695 \end{array}$	$\begin{array}{r} 0.4285\\ 0.4370\\ 0.4339\\ 0.4383\\ 0.4493\end{array}$	$\begin{array}{r} 0.4376 \\ 0.4422 \\ 0.4441 \\ 0.4442 \\ 0.4472 \end{array}$	$\begin{array}{r} 0.4441 \\ 0.4464 \\ 0.4473 \\ 0.4473 \\ 0.4481 \end{array}$	inlet 0.4432 0.4457 0.4475 0.4475 0.4445 0.4478	<u>;</u> ; ;
	$\begin{array}{c}1\\2\\3\\4\\5\\6\end{array}$	$\begin{array}{c} 0.4128\\ 0.3226\\ 0.3718\\ 0.4207\\ 0.3738\\ 0.3044 \end{array}$	$\begin{array}{r} 0.4117\\ \underline{0.3092}\\ 0.3651\\ 0.4416\\ 0.3730\\ \underline{0.3352}\end{array}$	$\begin{array}{c} 0.4119\\ 0.3876\\ 0.3857\\ 0.4177\\ 0.4008\\ 0.4096\end{array}$	$\begin{array}{r} & \text{s} \\ 0.4168 \\ 0.4066 \\ 0.4011 \\ 0.4050 \\ 0.4216 \\ 0.4469 \end{array}$		$\begin{array}{r} \text{ise direct} \\ \hline 0.4065 \\ 0.4134 \\ \hline 0.3672 \\ 0.3703 \\ 0.4525 \\ 0.4765 \end{array}$	$\begin{array}{l} \mbox{tion} \leftarrow \\ \hline 0.3831 \\ 0.4303 \\ 0.3504 \\ 0.3602 \\ 0.4742 \\ 0.4806 \end{array}$	$\begin{array}{r} 0.3946\\ 0.4397\\ 0.3932\\ 0.3923\\ 0.4695\\ 0.4702 \end{array}$	$\begin{array}{c} 0.4285\\ 0.4370\\ 0.4339\\ 0.4383\\ 0.4493\\ 0.4538\end{array}$	$\begin{array}{c} 0.4376\\ 0.4422\\ 0.4441\\ 0.4442\\ 0.4472\\ 0.4472\\ 0.4512\end{array}$	$\begin{array}{r} 0.4441 \\ 0.4464 \\ 0.4473 \\ 0.4473 \\ 0.4481 \\ 0.4505 \end{array}$	inlet 0.4432 0.4457 0.4475 0.4445 0.4445 0.4478 0.4478	<u>;</u> ; ; ;
	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	$\begin{array}{c} 0.4128\\ 0.3226\\ 0.3718\\ 0.4207\\ 0.3738\\ 0.3044\\ 0.4309\end{array}$	$\begin{array}{r} 0.4117\\ \underline{0.3092}\\ 0.3651\\ 0.4416\\ 0.3730\\ \underline{0.3352}\\ 0.4529\end{array}$	$\begin{array}{c} 0.4119\\ 0.3876\\ 0.3857\\ 0.4177\\ 0.4008\\ 0.4096\\ 0.4550\\ \end{array}$	0.4168 0.4066 0.4011 0.4050 0.4216 0.4269 0.4628	$\begin{array}{c} \text{tream w} \\ \hline 0.4141 \\ 0.4105 \\ 0.3863 \\ 0.3878 \\ 0.4412 \\ 0.4596 \\ 0.4682 \end{array}$	$\begin{array}{r} \text{ise direct}\\ \hline 0.4065\\ \hline 0.4134\\ \hline 0.3672\\ \hline 0.3703\\ \hline 0.4525\\ \hline 0.4765\\ \hline 0.4728 \end{array}$	$\begin{array}{l} \begin{tince} \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{c} 0.3946\\ 0.4397\\ 0.3932\\ 0.3923\\ 0.4695\\ 0.4702\\ 0.4654\end{array}$	$\begin{array}{c} 0.4285\\ 0.4370\\ 0.4339\\ 0.4383\\ 0.4493\\ 0.4538\\ 0.4558\end{array}$	$\begin{array}{c} 0.4376\\ 0.4422\\ 0.4441\\ 0.4442\\ 0.4472\\ 0.4472\\ 0.4512\\ 0.4517\end{array}$	$\begin{array}{c} 0.4441\\ 0.4464\\ 0.4473\\ 0.4473\\ 0.4481\\ 0.4505\\ 0.4503\end{array}$	inlet 0.4432 0.4457 0.4475 0.4475 0.4478 0.4478 0.4501 0.4499	<u>;</u> ; ; ; ;
	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	$\begin{array}{c} 0.4128\\ 0.3226\\ 0.3718\\ 0.4207\\ 0.3738\\ 0.3044\\ 0.4309\\ 0.4934 \end{array}$	$\begin{array}{r} 0.4117\\ \underline{0.3092}\\ 0.3651\\ 0.4416\\ 0.3730\\ \underline{0.3352}\\ 0.4529\\ 0.4902 \end{array}$	$\begin{array}{c} 0.4119\\ 0.3876\\ 0.3857\\ 0.4177\\ 0.4008\\ 0.4096\\ 0.4550\\ 0.4784\end{array}$	0.4168 0.4066 0.4011 0.4050 0.4216 0.4469 0.4628 0.4702	$\begin{array}{c} \text{tream w} \\ \hline 0.4141 \\ 0.4105 \\ 0.3863 \\ 0.3878 \\ 0.4412 \\ 0.4596 \\ 0.4682 \\ 0.4682 \\ 0.4687 \end{array}$	$\begin{array}{c} \underline{0.4065}\\ 0.4134\\ \underline{0.3672}\\ 0.3703\\ 0.4525\\ 0.4765\\ 0.4728\\ 0.4689\end{array}$	$\begin{array}{l} \begin{tince} tion \leftarrow \\ \hline 0.3831 \\ 0.4303 \\ 0.3504 \\ 0.3602 \\ 0.4742 \\ 0.4806 \\ 0.4718 \\ 0.4668 \end{tince} \end{tince} \end{tince} \end{tince}$	$\begin{array}{c} 0.3946\\ 0.4397\\ 0.3932\\ 0.3923\\ 0.4695\\ 0.4702\\ 0.4654\\ 0.4622\end{array}$	$\begin{array}{c} 0.4285\\ 0.4370\\ 0.4339\\ 0.4383\\ 0.4493\\ 0.4538\\ 0.4558\\ 0.4558\end{array}$	$\begin{array}{c} 0.4376\\ 0.4422\\ 0.4441\\ 0.4442\\ 0.4472\\ 0.4512\\ 0.4517\\ 0.4526\end{array}$	$\begin{array}{c} 0.4441 \\ 0.4464 \\ 0.4473 \\ 0.4473 \\ 0.4473 \\ 0.4481 \\ 0.4505 \\ 0.4503 \\ 0.4503 \\ 0.4509 \end{array}$	inlet 0.4432 0.4457 0.4475 0.4445 0.4445 0.4478 0.4501 0.4500 0.4500	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array} $	$\begin{array}{c} 0.4128\\ 0.3226\\ 0.3718\\ 0.4207\\ 0.3738\\ 0.3044\\ 0.4309\\ 0.4934\\ 0.4934\end{array}$	$\begin{array}{c} 0.4117\\ \underline{0.3092}\\ 0.3651\\ 0.4416\\ 0.3730\\ \underline{0.3352}\\ 0.4529\\ 0.4902\\ 0.4855\end{array}$	$\begin{array}{c} 0.4119\\ 0.3876\\ 0.3857\\ 0.4177\\ 0.4008\\ 0.4096\\ 0.4550\\ 0.4784\\ 0.4797\end{array}$	s 0.4168 0.4066 0.4011 0.4050 0.4216 0.4216 0.4628 0.4702 0.4705	$\begin{array}{c} \text{tream w} \\ \hline 0.4141 \\ 0.4105 \\ 0.3863 \\ 0.3878 \\ 0.4412 \\ 0.4596 \\ 0.4682 \\ 0.4687 \\ 0.4679 \end{array}$	$\begin{array}{c} \underline{0.4065}\\ 0.4134\\ \underline{0.3672}\\ 0.3703\\ 0.4525\\ 0.4765\\ 0.4728\\ 0.4689\\ 0.4664 \end{array}$	$\begin{array}{r} & \underbrace{\text{tion}}{0.3831} \\ & 0.3831 \\ & 0.4303 \\ & 0.3504 \\ & 0.3602 \\ & 0.4742 \\ & 0.4606 \\ & 0.4718 \\ & 0.4668 \\ & 0.4639 \end{array}$	$\begin{array}{c} 0.3946\\ 0.4397\\ 0.3932\\ 0.3923\\ 0.4695\\ 0.4702\\ 0.4654\\ 0.4652\\ 0.4602\end{array}$	$\begin{array}{c} 0.4285\\ 0.4370\\ 0.4339\\ 0.4383\\ 0.4383\\ 0.4538\\ 0.4558\\ 0.4558\\ 0.4552\\ 0.4551\end{array}$	$\begin{array}{c} 0.4376\\ 0.4422\\ 0.4441\\ 0.4442\\ 0.4472\\ 0.4512\\ 0.4512\\ 0.4526\\ 0.4521\end{array}$	$\begin{array}{c} 0.4441\\ 0.4464\\ 0.4473\\ 0.4473\\ 0.4473\\ 0.4481\\ 0.4505\\ 0.4503\\ 0.4503\\ 0.4509\\ 0.4505\end{array}$	inlet 0.4432 0.4457 0.4475 0.4445 0.4445 0.4478 0.4501 0.4499 0.4500 0.4500	5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	$\begin{array}{c} 0.4128\\ 0.3226\\ 0.3718\\ 0.4207\\ 0.3738\\ 0.3044\\ 0.4309\\ 0.4934\\ 0.4934\\ 0.4934\\ 0.4869\end{array}$	$\begin{array}{r} 0.4117\\ \underline{0.3092}\\ 0.3651\\ 0.4416\\ 0.3730\\ \underline{0.3352}\\ 0.4529\\ 0.4902\\ 0.4855\\ 0.4805\end{array}$	$\begin{array}{c} 0.4119\\ 0.3876\\ 0.3857\\ 0.4177\\ 0.4008\\ 0.4096\\ 0.4550\\ 0.4784\\ 0.4797\\ 0.4765\end{array}$	$\begin{array}{c} & \text{s}\\ 0.4168\\ 0.4066\\ 0.4011\\ 0.4050\\ 0.4216\\ 0.4216\\ 0.4469\\ 0.4628\\ 0.4702\\ 0.4705\\ 0.4695\end{array}$	$\begin{array}{c} \text{tream w} \\ \hline 0.4141 \\ 0.4105 \\ 0.3863 \\ 0.3878 \\ 0.4412 \\ 0.4596 \\ 0.4682 \\ 0.4687 \\ 0.4667 \\ 0.4667 \end{array}$	$\begin{array}{c} & \text{ise direct} \\ \hline 0.4065 \\ \hline 0.4134 \\ \hline 0.3672 \\ \hline 0.3703 \\ \hline 0.4525 \\ \hline 0.4765 \\ \hline 0.4728 \\ \hline 0.4689 \\ \hline 0.4664 \\ \hline 0.4640 \end{array}$	$\begin{array}{r} & \underbrace{\text{tion}} \leftarrow \\ & 0.3831 \\ & 0.4303 \\ & 0.3504 \\ & 0.3602 \\ & 0.4742 \\ & 0.4742 \\ & 0.4806 \\ & 0.4718 \\ & 0.4668 \\ & 0.4639 \\ & 0.4613 \end{array}$	$\begin{array}{c} 0.3946\\ 0.4397\\ 0.3932\\ 0.3923\\ 0.4695\\ 0.4695\\ 0.4702\\ 0.4654\\ 0.4622\\ 0.4602\\ 0.4683\end{array}$	$\begin{array}{c} 0.4285\\ 0.4370\\ 0.4339\\ 0.4383\\ 0.4383\\ 0.4538\\ 0.4558\\ 0.4558\\ 0.4552\\ 0.4551\\ 0.4544\end{array}$	$\begin{array}{c} 0.4376\\ 0.4422\\ 0.4441\\ 0.4442\\ 0.4472\\ 0.4512\\ 0.4512\\ 0.4526\\ 0.4521\\ 0.4521\\ 0.4519\end{array}$	$\begin{array}{c} 0.4441\\ 0.4464\\ 0.4473\\ 0.4473\\ 0.4481\\ 0.4505\\ 0.4503\\ 0.4509\\ 0.4509\\ 0.4505\\ 0.4504\end{array}$	inlet 0.4432 0.4457 0.4475 0.4475 0.4478 0.4501 0.4500 0.4500 0.4500 0.4498	5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \end{array} $	$\begin{array}{c} 0.4128\\ 0.3226\\ 0.3718\\ 0.4207\\ 0.3738\\ 0.3044\\ 0.4309\\ 0.4934\\ 0.4934\\ 0.4934\\ 0.4869\\ 0.4831\end{array}$	$\begin{array}{c} 0.4117\\ \underline{0.3092}\\ 0.3651\\ 0.4416\\ 0.3730\\ \underline{0.3352}\\ 0.4529\\ 0.4902\\ 0.4855\\ 0.4805\\ 0.4778\end{array}$	$\begin{array}{c} 0.4119\\ 0.3876\\ 0.3857\\ 0.4177\\ 0.4008\\ 0.4096\\ 0.4550\\ 0.4784\\ 0.4797\\ 0.4765\\ 0.4746\end{array}$	$\begin{array}{c} & s\\ 0.4168\\ 0.4066\\ 0.4011\\ 0.4050\\ 0.4216\\ 0.4216\\ 0.4469\\ 0.4628\\ 0.4702\\ 0.4705\\ 0.4695\\ 0.4689\end{array}$	$\begin{array}{c} \text{tream w} \\ \hline 0.4141 \\ 0.4105 \\ 0.3863 \\ 0.3878 \\ 0.4412 \\ 0.4596 \\ 0.4682 \\ 0.4682 \\ 0.4687 \\ 0.4679 \\ 0.4667 \\ 0.4590 \end{array}$	$\begin{array}{r} & \text{ise direct} \\ \hline 0.4065 \\ \hline 0.4134 \\ \hline 0.3672 \\ \hline 0.3703 \\ \hline 0.4525 \\ \hline 0.4728 \\ \hline 0.4728 \\ \hline 0.4664 \\ \hline 0.4664 \\ \hline 0.4660 \\ \hline 0.4568 \end{array}$	$\begin{array}{r} & \underbrace{\text{tion}} \leftarrow \\ & 0.3831 \\ & 0.4303 \\ & 0.3504 \\ & 0.3602 \\ & 0.4742 \\ & 0.4806 \\ & 0.4718 \\ & 0.4806 \\ & 0.4718 \\ & 0.4639 \\ & 0.4613 \\ & 0.4545 \end{array}$	$\begin{array}{c} 0.3946\\ 0.4397\\ 0.3932\\ 0.3923\\ 0.4695\\ 0.4702\\ 0.4654\\ 0.4622\\ 0.4602\\ 0.4583\\ 0.4524\end{array}$	$\begin{array}{c} 0.4285\\ 0.4370\\ 0.4339\\ 0.4383\\ 0.4493\\ 0.4538\\ 0.4558\\ 0.4552\\ 0.4551\\ 0.4551\\ 0.4544\\ 0.4499\end{array}$	$\begin{array}{c} 0.4376\\ 0.4422\\ 0.4422\\ 0.4442\\ 0.4472\\ 0.4512\\ 0.4512\\ 0.4521\\ 0.4521\\ 0.4521\\ 0.4519\\ 0.4486\end{array}$	$\begin{array}{c} 0.4441\\ 0.4464\\ 0.4473\\ 0.4473\\ 0.4481\\ 0.4505\\ 0.4503\\ 0.4509\\ 0.4505\\ 0.4504\\ 0.4504\\ 0.4492\end{array}$	inlet 0.4432 0.4457 0.4475 0.4475 0.4478 0.4501 0.4499 0.4500 0.4500 0.4500 0.4498 0.4498	5 2 3 3 3 3 3 3 3 3 3 3 3
	$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $	$\begin{array}{c} 0.4128\\ 0.3226\\ 0.3718\\ 0.4207\\ 0.3738\\ 0.3044\\ 0.4309\\ 0.4934\\ 0.4934\\ 0.4869\\ 0.4831\\ 0.4794 \end{array}$	$\begin{array}{c} 0.4117\\ \underline{0.3092}\\ 0.3651\\ 0.4416\\ 0.3730\\ \underline{0.3352}\\ 0.4529\\ 0.4902\\ 0.4855\\ 0.4805\\ 0.4778\\ 0.4749\end{array}$	$\begin{array}{c} 0.4119\\ 0.3876\\ 0.3857\\ 0.4177\\ 0.4008\\ 0.4096\\ 0.4550\\ 0.4750\\ 0.4784\\ 0.4797\\ 0.4765\\ 0.4765\\ 0.4746\\ 0.4723\end{array}$	$\begin{array}{c} & \\ 0.4168 \\ 0.4066 \\ 0.4011 \\ 0.4050 \\ 0.4216 \\ 0.4216 \\ 0.4469 \\ 0.4628 \\ 0.4702 \\ 0.4705 \\ 0.4695 \\ 0.4695 \\ 0.4672 \end{array}$	$\begin{array}{c} \text{tream w}\\ \hline 0.4141\\ 0.4105\\ 0.3863\\ 0.3878\\ 0.4412\\ 0.4596\\ 0.4682\\ 0.4687\\ 0.4667\\ 0.4667\\ 0.4667\\ 0.4590\\ 0.4657\end{array}$	$\begin{array}{r} & \text{ise direct} \\ \hline 0.4065 \\ 0.4134 \\ \hline 0.3672 \\ 0.3703 \\ 0.4525 \\ 0.4765 \\ 0.4765 \\ 0.4768 \\ 0.4689 \\ 0.4664 \\ 0.4640 \\ 0.4568 \\ 0.4630 \end{array}$	$\begin{array}{r} \hbox{tion} \leftarrow \\ \hline 0.3831 \\ 0.4303 \\ 0.3504 \\ 0.3602 \\ 0.4742 \\ 0.4806 \\ 0.4718 \\ 0.4806 \\ 0.4718 \\ 0.4668 \\ 0.4639 \\ 0.4613 \\ 0.4545 \\ 0.4601 \end{array}$	$\begin{array}{c} 0.3946\\ 0.4397\\ 0.3932\\ 0.3923\\ 0.4695\\ 0.4702\\ 0.4654\\ 0.4622\\ 0.4622\\ 0.4602\\ 0.4583\\ 0.4524\\ 0.4575\end{array}$	$\begin{array}{c} 0.4285\\ 0.4370\\ 0.4339\\ 0.4383\\ 0.4493\\ 0.4538\\ 0.4558\\ 0.4558\\ 0.4552\\ 0.4551\\ 0.4551\\ 0.4544\\ 0.4499\\ 0.4543\end{array}$	$\begin{array}{c} 0.4376\\ 0.4422\\ 0.4422\\ 0.4441\\ 0.4442\\ 0.4512\\ 0.4512\\ 0.4517\\ 0.4526\\ 0.4521\\ 0.4529\\ 0.4486\\ 0.4522\end{array}$	$\begin{array}{c} 0.4441\\ 0.4464\\ 0.4473\\ 0.4473\\ 0.4473\\ 0.4481\\ 0.4505\\ 0.4503\\ 0.4503\\ 0.4509\\ 0.4505\\ 0.4504\\ 0.4492\\ 0.4509\end{array}$	$\begin{array}{r} \text{inlet} \\ 0.4432 \\ 0.4457 \\ 0.4475 \\ 0.4475 \\ 0.4478 \\ 0.4501 \\ 0.4501 \\ 0.4500 \\ 0.4500 \\ 0.4500 \\ 0.4498 \\ 0.4501 \end{array}$	

TABLE 31. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 5.5$: Depth averaged velocity magnitude. The value for the cells containing the turbines have been underlined

	downstre	am					sti	ream wise	direction \star	<u></u>				
1	1.86e	-03 3.8	5e-03 4.	19e-03 4.	.57e-03	5.00e-03	5.49e-03	6.05e-03	6.70e-03	7.45e-03	8.31e-03	9.30e-03	1.04e-02	1.17e-02
2	1.99e	-03 4.08	8e-03 4.	43e-03 4.	.83e-03	5.28e-03	5.80e-03	6.39e-03	7.07e-03	7.87e-03	8.81e-03	9.92e-03	1.12e-02	1.27e-02
3	1.84e	-03 3.75	2e-03 4.	04e-03 4.	.39e-03	4.80e-03	5.26e-03	5.79e-03	6.39e-03	7.10e-03	7.92e-03	8.88e-03	1.00e-02	1.13e-02
4	1.77e	-03 3.50	0e-03 3.	79e-03 4.	.12e-03	4.49e-03	4.91e-03	5.39e-03	5.95e-03	6.58e-03	7.30e-03	8.11e-03	8.96e-03	9.76e-03
5	1.95e	-03 3.6'	7e-03 3.	95e-03 4.	.26e-03	4.62e-03	5.03e-03	5.51e-03	6.05e-03	6.69e-03	7.43e-03	8.30e-03	9.29e-03	1.03e-02
6	2.05e	-03 3.7	7e-03 4.	04e-03 4.	.35e-03	4.70e-03	5.10e-03	5.56e-03	6.10e-03	6.72e-03	7.47e-03	8.33e-03	9.33e-03	1.03e-02
7	1.91e	-03 3.28	8e-03 3.4	49e-03 3.	.72e-03	3.99e-03	4.28e-03	4.61e-03	4.99e-03	5.41e-03	5.86e-03	6.37e-03	6.86e-03	7.28e-03
8	1.57e	-03 2.5	5e-03 2.	68e-03 2.	.81e-03	2.96e-03	3.12e-03	3.28e-03	3.43e-03	3.58e-03	3.66e-03	3.71e-03	3.62e-03	3.35e-03
9	1.12e	-03 1.44	4e-03 1.4	47e-03 1.	.49e-03	1.51e-03	1.53e-03	1.53e-03	1.47e-03	1.46e-03	1.41e-03	1.39e-03	1.37e-03	1.36e-03
10	7.96e	-04 9.8'	7e-04 1.	00e-03 1.	.02e-03	1.04e-03	1.06e-03	1.08e-03	1.11e-03	1.14e-03	1.14e-03	1.19e-03	1.23e-03	1.28e-03
11	6.60e	-04 8.43	3e-04 8.	66e-04 8.	.92e-04	9.19e-04	9.50e-04	9.82e-04	1.02e-03	1.06e-03	1.10e-03	1.15e-03	1.20e-03	1.26e-03
12	6.24e	-04 8.24	4e-04 8.4	49e-04 8.	.76e-04	9.06e-04	9.37e-04	9.72 e- 04	1.01e-03	1.05e-03	1.10e-03	1.14e-03	1.20e-03	1.25e-03
13	6.07e	-04 8.1	1e-04 8.3	37e-04 8.	.65e-04	8.95e-04	9.27 e- 04	9.63e-04	1.00e-03	1.04e-03	1.09e-03	1.14e-03	1.19e-03	1.25e-03
						stream	wise direc	tion \leftarrow					inl	let
	1 1.	30e-02	1.41e-02	1.38e-02	1.44e-0	stream 2 1.80e-0	wise direc $2 \underline{2.24e-0}$	$\frac{1}{2}$ 2.08e-0)2 1.15e-	02 2.52e-0)3 2.43e-()3 2.67e-0	$103 2.79e^{-1}$	$\frac{1}{03}$
	$\begin{array}{c c}1&1.\\2&1.\end{array}$	30e-02 41e-02	1.41e-02 1.33e-02	1.38e-02 1.42e-02	1.44e-0 1.22e-0	stream 2 1.80e-0 2 1.55e-0	$\begin{array}{c} \text{wise direc} \\ 2 & \underline{2.24e-0} \\ 2 & 1.85e-0 \end{array}$	$\begin{array}{c} \text{tion} \leftarrow \\ \hline \underline{2} & 2.08\text{e-0} \\ \hline 2 & 1.98\text{e-0} \end{array}$)2 1.15e-)2 1.30e-	02 2.52e-0 02 2.57e-0)3 2.43e-()3 2.41e-()3 2.67e-0)3 2.65e-0	inl 03 2.79e-0 03 2.79e-0	let 03 03
	$ \begin{array}{cccc} 1 & 1.2 \\ 2 & 1.2 \\ 3 & 1.2 \end{array} $	30e-02 41e-02 27e-02	$\frac{1.41e-02}{1.33e-02}$ $\frac{1.35e-02}{1.35e-02}$	1.38e-02 1.42e-02 1.17e-02	1.44e-0 1.22e-0 1.07e-0	stream 2 1.80e-0 2 1.55e-0 2 1.55e-0	wise direc 2 2.24e-0 2 1.85e-0 2 1.71e-0	$\begin{array}{l} \text{tion} \leftarrow \\ \underline{02} & 2.08\text{e-0} \\ \underline{02} & 1.98\text{e-0} \\ \underline{02} & 1.45\text{e-0} \end{array}$)2 1.15e-)2 1.30e-)2 7.67e-	02 2.52e-(02 2.57e-(03 2.30e-(03 2.43e-(03 2.41e-(03 2.46e-(03 2.67e-0 03 2.65e-0 03 2.68e-0	inl 03 2.79e- 03 2.79e- 03 2.83e-	let 03 03 03
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30e-02 41e-02 27e-02 03e-02	$ \begin{array}{r} 1.41e-02 \\ \underline{1.33e-02} \\ 1.35e-02 \\ 9.74e-03 \end{array} $	1.38e-02 1.42e-02 1.17e-02 8.96e-03	1.44e-0 1.22e-0 1.07e-0 9.31e-0	stream 2 1.80e-0 2 1.55e-0 2 1.55e-0 3 1.17e-0	$\begin{array}{r} \text{wise direc} \\ \hline 2 & \underline{2.24\text{e-0}} \\ 2 & 1.85\text{e-0} \\ 2 & \underline{1.71\text{e-0}} \\ 2 & 1.25\text{e-0} \end{array}$	$\begin{array}{rl} \text{tion} \leftarrow \\ \underline{02} & 2.08\text{e-}0 \\ \underline{02} & 1.98\text{e-}0 \\ \underline{02} & 1.45\text{e-}0 \\ \underline{02} & 1.02\text{e-}0 \end{array}$)2 1.15e-()2 1.30e-()2 7.67e-()2 5.17e-(02 2.52e-(02 2.57e-(03 2.30e-(03 2.27e-(03 2.43e-0 03 2.41e-0 03 2.46e-0 03 2.43e-0)3 2.67e-()3 2.65e-()3 2.68e-()3 2.68e-(inl 03 2.79e-0 03 2.79e-0 03 2.83e-0 03 2.78e-0	let 03 03 03 03 03
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30e-02 41e-02 27e-02 03e-02 13e-02	1.41e-02 <u>1.33e-02</u> 1.35e-02 9.74e-03 1.10e-02	1.38e-02 1.42e-02 1.17e-02 8.96e-03 8.06e-03	1.44e-0 1.22e-0 1.07e-0 9.31e-0 6.77e-0	stream 2 1.80e-0 2 1.55e-0 2 1.55e-0 3 1.17e-0 3 5.16e-0	wise direc 2 2.24e-0 2 1.85e-0 2 1.71e-0 2 1.25e-0 3 4.95e-0	$\begin{array}{c} \underline{\text{tion}} \leftarrow \\ \underline{22} & 2.08\text{e-}0 \\ \underline{22} & 1.98\text{e-}0 \\ \underline{22} & 1.45\text{e-}0 \\ \underline{22} & 1.02\text{e-}0 \\ \underline{33} & 3.29\text{e-}0 \end{array}$)2 1.15e-()2 1.30e-()2 7.67e-()2 5.17e-()3 2.33e-(02 2.52e-(02 2.57e-(03 2.30e-(03 2.27e-(03 2.27e-(03 2.26e-()3 2.43e-0)3 2.41e-0)3 2.46e-0)3 2.43e-0)3 2.43e-0)3 2.43e-0)3 2.41e-0)3 2.67e-()3 2.65e-()3 2.68e-()3 2.68e-()3 2.68e-()3 2.68e-(inl 03 2.79e-(03 2.79e-(03 2.83e-(03 2.78e-(03 2.82e-(03 2.82e-(let 03 03 03 03 03 03
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30e-02 41e-02 27e-02 03e-02 13e-02 08e-02	1.41e-02 <u>1.33e-02</u> 1.35e-02 9.74e-03 1.10e-02 <u>9.55e-03</u>	1.38e-02 1.42e-02 1.17e-02 8.96e-03 8.06e-03 7.01e-03	1.44e-0 1.22e-0 1.07e-0 9.31e-0 6.77e-0 3.68e-0	stream 2 1.80e-0 2 1.55e-0 2 1.55e-0 3 1.17e-0 3 5.16e-0 3 2.75e-0	wise direc 2 2.24e-0 2 1.85e-0 2 1.71e-0 2 1.25e-0 3 4.95e-0 3 2.32e-0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$)2 1.15e-()2 1.30e-()2 7.67e-()2 5.17e-()3 2.33e-()3 2.13e-(02 2.52e-(02 2.57e-(03 2.30e-(03 2.27e-(03 2.26e-(03 2.32e-(03 2.43e-0 03 2.41e-0 03 2.46e-0 03 2.43e-0 03 2.43e-0 03 2.41e-0 03 2.50e-0)3 2.67e-()3 2.65e-()3 2.68e-()3 2.68e-()3 2.68e-()3 2.65e-()3 2.65e-()3 2.69e-(inl 03 2.79e-0 03 2.79e-0 03 2.83e-0 03 2.78e-0 03 2.82e-0 03 2.88e-0 03 2.88e-0	let 03 03 03 03 03 03 03 03
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30e-02 41e-02 27e-02 03e-02 13e-02 08e-02 38e-03	$\begin{array}{c} 1.41\text{e-02} \\ \underline{1.33\text{e-02}} \\ 1.35\text{e-02} \\ 9.74\text{e-03} \\ 1.10\text{e-02} \\ \underline{9.55\text{e-03}} \\ 5.56\text{e-03} \end{array}$	1.38e-02 1.42e-02 1.17e-02 8.96e-03 8.06e-03 7.01e-03 3.43e-03	1.44e-0 1.22e-0 1.07e-0 9.31e-0 6.77e-0 3.68e-0 2.27e-0	stream 2 1.80e-0 2 1.55e-0 2 1.55e-0 3 1.17e-0 3 5.16e-0 3 2.75e-0 3 1.70e-0	wise direc 2 2.24e-0 2 1.85e-0 2 1.71e-0 2 1.25e-0 3 4.95e-0 3 2.32e-0 3 1.78e-0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$)2 1.15e-()2 1.30e-()2 7.67e-()2 5.17e-()3 2.33e-()3 2.13e-()3 2.09e-(02 2.52e-(02 2.57e-(03 2.30e-(03 2.27e-(03 2.26e-(03 2.32e-(03 2.32e-(03 2.26e-()3 2.43e-()3 2.41e-()3 2.46e-()3 2.43e-()3 2.41e-()3 2.50e-()3 2.44e-()3 2.67e-()3 2.65e-()3 2.68e-()3 2.68e-()3 2.65e-()3 2.65e-()3 2.65e-()3 2.65e-()3 2.65e-(inl 03 2.79e-1 03 2.79e-1 03 2.83e-1 03 2.83e-1 03 2.82e-1 03 2.88e-1 03 2.88e-1 03 2.86e-1	let 03 03 03 03 03 03 03 03 03
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30e-02 41e-02 27e-02 03e-02 13e-02 08e-02 38e-03 78e-03	1.41e-02 <u>1.33e-02</u> 1.35e-02 9.74e-03 1.10e-02 <u>9.55e-03</u> 5.56e-03 1.95e-03	1.38e-02 1.42e-02 1.17e-02 8.96e-03 8.06e-03 7.01e-03 3.43e-03 1.81e-03	1.44e-0 1.22e-0 1.07e-0 9.31e-0 6.77e-0 3.68e-0 2.27e-0 1.62e-0	stream 2 1.80e-0 2 1.55e-0 2 1.55e-0 3 1.17e-0 3 5.16e-0 3 2.75e-0 3 1.70e-0 3 1.70e-0 3 1.65e-0	wise direc 2 2.24e-0 2 1.85e-0 2 1.71e-0 2 1.25e-0 3 4.95e-0 3 2.32e-0 3 1.78e-0 3 1.78e-0 3 1.75e-0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	12 1.15e-1 12 1.30e-1 12 7.67e-1 12 5.17e-1 13 2.33e-1 13 2.13e-1 13 2.09e-1 13 2.08e-0	02 2.52e-(02 2.57e-(03 2.30e-(03 2.27e-(03 2.26e-(03 2.32e-(03 2.32e-(03 2.26e-(03 2.26e-(03 2.26e-(03 2.26e-(03 2.26e-()3 2.43e-()3 2.41e-()3 2.46e-()3 2.43e-()3 2.41e-()3 2.50e-()3 2.44e-()3 2.44e-()3 2.67e-1)3 2.65e-1)3 2.68e-1)3 2.68e-1)3 2.65e-1	inl 03 2.79e-1 03 2.79e-1 03 2.83e-1 03 2.83e-1 03 2.82e-1 03 2.82e-1 03 2.88e-1 03 2.86e-1 03 2.87e-1	let 03 03 03 03 03 03 03 03 03 03 03 03
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30e-02 41e-02 27e-02 03e-02 13e-02 08e-02 38e-03 78e-03 38e-03	1.41e-02 1.33e-02 1.35e-02 9.74e-03 1.10e-02 9.55e-03 1.95e-03 1.95e-03 1.44e-03	1.38e-02 1.42e-02 1.17e-02 8.96e-03 8.06e-03 7.01e-03 3.43e-03 1.81e-03 1.48e-03	1.44e-0 1.22e-0 1.07e-0 9.31e-0 6.77e-0 3.68e-0 2.27e-0 1.62e-0 1.57e-0	stream 2 1.80e-0 2 1.55e-0 2 1.55e-0 3 1.17e-0 3 2.75e-0 3 1.70e-0 3 1.65e-0 3 1.64e-0	wise direc 2 2.24e-0 2 1.85e-0 2 1.71e-0 2 1.25e-0 3 4.95e-0 3 2.32e-0 3 1.78e-0 3 1.75e-0 3 1.75e-0 3 1.75e-0	$\begin{array}{cccc} \text{trion} \leftarrow \\ \hline 2 & 2.08\text{e-}0 \\ \hline 2 & 1.98\text{e-}0 \\ \hline 2 & 1.98\text{e-}0 \\ \hline 2 & 1.45\text{e-}0 \\ \hline 2 & 1.02\text{e-}0 \\ \hline 3 & 3.29\text{e-}0 \\ \hline 3 & 2.09\text{e-}0 \\ \hline 3 & 1.92\text{e-}0 \\ \hline 3 & 1.90\text{e-}0 \\ \hline 3 & 1.90\text{e-}0 \end{array}$	12 1.15e-1 12 1.30e-1 12 7.67e-1 12 5.17e-0 13 2.33e-1 13 2.13e-1 13 2.09e-1 13 2.08e-0 13 2.07e-0	02 2.52e-(02 2.57e-(03 2.30e-(03 2.27e-(03 2.26e-(03 2.32e-(03 2.26e-(03 2.26e-(03 2.26e-(03 2.26e-(03 2.26e-(03 2.29e-(03 2.26e-(03 2.43e-(03 2.41e-(03 2.43e-(03 2.43e-(03 2.41e-(03 2.50e-(03 2.44e-(03 2.47e-(03 2.47e-()3 2.67e-1)3 2.65e-1)3 2.68e-1)3 2.68e-1)3 2.65e-1	inl 03 2.79e-1 03 2.79e-1 03 2.78e-1 03 2.83e-1 03 2.88e-1 03 2.88e-1 03 2.88e-1 03 2.86e-1 03 2.87e-1 03 2.87e-1	let 03 03 03 03 03 03 03 03 03 03
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30e-02 41e-02 27e-02 03e-02 13e-02 08e-02 38e-03 38e-03 38e-03 33e-03	1.41e-02 1.33e-02 1.35e-02 9.74e-03 1.10e-02 9.55e-03 1.95e-03 1.44e-03 1.42e-03	$\begin{array}{c} 1.38e{-}02\\ 1.42e{-}02\\ 1.17e{-}02\\ 8.96e{-}03\\ 8.06e{-}03\\ 7.01e{-}03\\ 3.43e{-}03\\ 1.81e{-}03\\ 1.81e{-}03\\ 1.48e{-}03\\ 1.46e{-}03 \end{array}$	1.44e-0 1.22e-0 1.07e-0 9.31e-0 6.77e-0 3.68e-0 2.27e-0 1.62e-0 1.57e-0 1.57e-0	stream 2 1.80e-0 2 1.55e-0 2 1.55e-0 3 1.17e-0 3 2.75e-0 3 1.70e-0 3 1.65e-0 3 1.64e-0 3 1.64e-0 3 1.64e-0	wise direct 2 2.24e-0 2 1.85e-0 2 1.71e-0 2 1.25e-0 3 4.95e-0 3 1.78e-0 3 1.75e-0 3 1.75e-0 3 1.75e-0 3 1.75e-0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	12 1.15e-1 12 1.30e-1 12 7.67e-1 12 5.17e-1 13 2.33e-1 13 2.13e-1 13 2.09e-1 13 2.08e-1 13 2.07e-1 13 2.07e-1	02 2.52e-(02 2.57e-(03 2.30e-(03 2.27e-(03 2.26e-(03 2.32e-(03 2.26e-()3 2.43e-()3 2.41e-()3 2.43e-()3 2.43e-()3 2.41e-()3 2.50e-()3 2.44e-()3 2.44e-()3 2.45e-()3 2.45e-(3 2.67e-1 3 2.65e-1 3 2.68e-1 3 2.68e-1 3 2.65e-1	inl 03 2.79e-1 03 2.79e-1 03 2.83e-1 03 2.88e-1 03 2.88e-1 03 2.88e-1 03 2.88e-1 03 2.88e-1 03 2.87e-1 03 2.87e-1 03 2.87e-1 03 2.85e-1	let 03 03 03 03 03 03 03 03 03 03
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30e-02 41e-02 27e-02 03e-02 13e-02 08e-02 38e-03 38e-03 38e-03 33e-03 32e-03	1.41e-02 1.33e-02 1.35e-02 9.74e-03 1.10e-02 9.55e-03 1.95e-03 1.44e-03 1.42e-03 1.42e-03	$\begin{array}{c} 1.38e{-}02\\ 1.42e{-}02\\ 1.17e{-}02\\ 8.96e{-}03\\ 8.06e{-}03\\ 7.01e{-}03\\ 3.43e{-}03\\ 1.81e{-}03\\ 1.81e{-}03\\ 1.48e{-}03\\ 1.46e{-}03\\ 1.46e{-}03\\ \end{array}$	1.44e-0 1.22e-0 1.07e-0 9.31e-0 6.77e-0 3.68e-0 2.27e-0 1.62e-0 1.57e-0 1.57e-0 1.57e-0	stream 2 1.80e-0 2 1.55e-0 2 1.55e-0 3 1.17e-0 3 2.75e-0 3 1.70e-0 3 1.65e-0 3 1.64e-0 3 1.64e-0 3 1.64e-0 3 1.42e-0	wise direc 2 2.24e-0 2 1.85e-0 2 1.71e-0 2 1.25e-0 3 4.95e-0 3 1.78e-0 3 1.75e-0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 1.15e-1 32 1.30e-1 32 7.67e-1 32 5.17e-1 33 2.13e-1 33 2.09e-1 33 2.08e-1 33 2.07e-1 33 2.07e-1 33 2.07e-1 33 2.07e-1	02 2.52e-(02 2.57e-(03 2.30e-(03 2.27e-(03 2.26e-(03 2.43e-0 03 2.41e-0 03 2.43e-0 03 2.43e-0 03 2.41e-0 03 2.42e-0 03 2.45e-0 03 2.31e-0)3 2.67e-1)3 2.65e-1)3 2.68e-1)3 2.65e-1	inl 03 2.79e-1 03 2.79e-1 03 2.83e-1 03 2.88e-1 03 2.88e-1 03 2.88e-1 03 2.88e-1 03 2.87e-1 03 2.87e-1 0	let 03 03 03 03 03 03 03 03 03 03
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30e-02 41e-02 27e-02 03e-02 13e-02 08e-02 38e-03 38e-03 38e-03 33e-03 32e-03 32e-03	1.41e-02 1.33e-02 1.35e-02 9.74e-03 1.10e-02 9.55e-03 1.95e-03 1.44e-03 1.42e-03 1.42e-03 1.41e-03	$\begin{array}{c} 1.38e{-}02\\ 1.42e{-}02\\ 1.17e{-}02\\ 8.96e{-}03\\ 8.06e{-}03\\ 7.01e{-}03\\ 3.43e{-}03\\ 1.81e{-}03\\ 1.81e{-}03\\ 1.48e{-}03\\ 1.46e{-}03\\ 1.46e{-}03\\ 1.46e{-}03\\ \end{array}$	1.44e-0 1.22e-0 1.07e-0 9.31e-0 6.77e-0 3.68e-0 2.27e-0 1.62e-0 1.57e-0 1.57e-0 1.57e-0 1.57e-0	stream 2 1.80e-0 2 1.55e-0 2 1.55e-0 3 1.17e-0 3 2.75e-0 3 1.70e-0 3 1.65e-0 3 1.64e-0 3 1.64e-0 3 1.42e-0 3 1.46e-0	wise direc 2 2.24e-0 2 1.85e-0 2 1.71e-0 2 1.25e-0 3 4.95e-0 3 1.78e-0 3 1.75e-0 3 1.75e-0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 1.15e-1 32 1.30e-1 32 7.67e-1 32 5.17e-1 33 2.33e-1 33 2.13e-1 33 2.09e-1 33 2.08e-1 33 2.07e-1 33 2.07e-1	02 2.52e-(02 2.57e-(03 2.30e-(03 2.27e-(03 2.26e-(03 2.26e-(03 2.29e-(03 2.26e-(03 2.30e-(03 2.43e-0 03 2.41e-0 03 2.43e-0 03 2.43e-0 03 2.41e-0 03 2.41e-0 03 2.41e-0 03 2.41e-0 03 2.41e-0 03 2.41e-0 03 2.44e-0 03 2.47e-0 03 2.45e-0 03 2.45e-0 03 2.45e-0 03 2.45e-0 03 2.45e-0 03 2.48e-0	3 2.67e-1 3 2.65e-1 3 2.68e-1 3 2.65e-1 3 2.67e-1	inl 03 2.79e-1 03 2.79e-1 03 2.83e-1 03 2.82e-1 03 2.82e-1 03 2.82e-1 03 2.87e-1 03 2.87e-1 03 2.87e-1 03 2.87e-1 03 2.87e-1 03 2.87e-1 03 2.87e-1 03 2.87e-1 03 2.87e-1	let 03 03 03 03 03 03 03 03 03 03

TABLE 32. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 5.5$: Depth averaged turbulent kinetic energy. The value for the cells containing the turbines have been underlined

_

	dov	vnstream	L				stre	am wise	direction	n ←				
1		1.7451	2.7498	2.8967	3.0598	3.2415	3.4452	3.6747	3.9348	4.2320	4.5752	4.9757	5.4506	6.0019
2		1.9549	3.0044	3.1470	3.3014	3.4684	3.6485	3.8419	4.0473	4.2619	4.4789	4.6825	4.8339	4.8316
3		1.7783	2.7005	2.8274	2.9657	3.1168	3.2820	3.4629	3.6611	3.8781	4.1161	4.3775	4.6657	4.9720
4		1.7363	2.5391	2.6507	2.7741	2.9113	3.0651	3.2388	3.4363	3.6630	3.9253	4.2310	4.5870	4.9806
5		1.9436	2.6968	2.7950	2.9021	3.0193	3.1479	3.2897	3.4461	3.6187	3.8079	4.0126	4.2254	4.4222
6		2.0455	2.7345	2.8144	2.8989	2.9882	3.0820	3.1800	3.2811	3.3826	3.4789	3.5557	3.5756	3.4388
7		1.7486	2.2233	2.2748	2.3296	2.3871	2.4472	2.5098	2.5744	2.6404	2.7022	2.7646	2.8108	2.8393
8		1.4222	1.7493	1.7768	1.8072	1.8414	1.8752	1.9077	1.9346	1.9575	1.9582	1.9503	1.9071	1.8236
9		1.1921	1.2676	1.2695	1.2686	1.2642	1.2555	1.2413	1.1910	1.1626	1.1190	1.0809	1.0399	1.0014
10		0.9803	1.0049	1.0010	0.9963	0.9909	0.9850	0.9790	0.9733	0.9683	0.9364	0.9373	0.9405	0.9460
11		0.8078	0.8420	0.8455	0.8494	0.8540	0.8591	0.8650	0.8714	0.8786	0.8867	0.8955	0.9051	0.9150
12		0.7491	0.8170	0.8240	0.8313	0.8390	0.8470	0.8553	0.8641	0.8732	0.8829	0.8929	0.9034	0.9140
13		0.7328	0.8161	0.8237	0.8315	0.8395	0.8478	0.8564	0.8654	0.8747	0.8844	0.8945	0.9051	0.9158
						stream w	ise direct	tion \leftarrow					i	nlet
	1	6.7741	8.4644	9.6035	11.6020	18.0305	21.7528	18.030)1 11.9	974 1.4	768 1.0	991 1.1	356 1.0	821
	2	4.2548	2.6240	6.2387	8.9856	14.2758	19.2166	5 27.014	43 21.5	306 1.6	216 1.1	139 1.1	548 1.1	240
	3	5.3576	6.5082	7.4222	7.5011	11.2145	10.8921	8.575	57 4.9	644 1.1	691 1.1	754 1.1	859 1.1	923
	4	5.4531	5.9155	5.9124	6.4353	7.0980	6.7952	4.922	27 2.1	941 1.1	339 1.1	457 1.1	784 1.1	141
	5	4.5717	4.8230	4.7604	4.4237	3.2210	2.7884	1.725	57 1.1	256 1.0	623 1.0	367 1.0	838 1.0	647
	6	2.7403	1.3912	2.4266	2.3772	1.7604	1.3885	5 1.135	58 1.0	691 1.1	192 1.1	701 1.1	926 1.2	160
	$\overline{7}$	2.8187	2.5479	2.0149	1.4312	1.0240	1.0118	1.025	56 1.0	448 1.0	528 1.0	693 1.1	057 1.1	514
	8	1.6610	1.3139	1.2077	1.0176	0.9912	0.9889	1.008	88 1.0	323 1.0	939 1.1	191 1.1	458 1.1	747
	~	0.0770	0.0004	0.000	0.0700	0.0799	0 0883	1 008	85 1.0	307 10	500 1.0	737 11	048 11	676
	9	0.9770	0.9634	0.9685	0.9708	0.9733	0.9005	1.000	1.0	307 1.0	003 1.0	101 111	010 1.1	010
	910	$0.9770 \\ 0.9284$	$0.9634 \\ 0.9413$	$0.9685 \\ 0.9486$	$0.9708 \\ 0.9647$	0.9733 0.9731	0.9883 0.9881	1.008	35 1.0	311 1.0	503 1.0 521 1.0	756 1.0	942 1.1	170
	9 10 11	$\begin{array}{c} 0.9770 \\ 0.9284 \\ 0.9263 \end{array}$	$\begin{array}{c} 0.9634 \\ 0.9413 \\ 0.9406 \end{array}$	$\begin{array}{c} 0.9685 \\ 0.9486 \\ 0.9481 \end{array}$	$\begin{array}{c} 0.9708 \\ 0.9647 \\ 0.9715 \end{array}$	$\begin{array}{c} 0.9733 \\ 0.9731 \\ 0.7252 \end{array}$	$0.9881 \\ 0.7350$	1.008 1.008 0.750		$ \begin{array}{cccc} 307 & 1.0 \\ 311 & 1.0 \\ 708 & 0.7 \\ \end{array} $	$503 ext{ }1.0 ext{ }1.0 ext{ }521 ext{ }1.0 ext{ }927 ext{ }0.8 ext{ }$	756 1.0 227 0.9	$\begin{array}{ccc} 942 & 1.1 \\ 942 & 1.1 \\ 996 & 1.1 \end{array}$	170 512
	9 10 11 12	$\begin{array}{c} 0.9770 \\ 0.9284 \\ 0.9263 \\ 0.9257 \end{array}$	$\begin{array}{c} 0.9634 \\ 0.9413 \\ 0.9406 \\ 0.9405 \end{array}$	$\begin{array}{c} 0.9685 \\ 0.9486 \\ 0.9481 \\ 0.9480 \end{array}$	$\begin{array}{c} 0.9708 \\ 0.9647 \\ 0.9715 \\ 0.9664 \end{array}$	$\begin{array}{c} 0.9733 \\ 0.9731 \\ 0.7252 \\ 0.9985 \end{array}$	$\begin{array}{c} 0.9883 \\ 0.9881 \\ 0.7350 \\ 1.0390 \end{array}$	1.008 1.008 0.750 1.060	$ 1.0 \\ 35 1.0 \\ 38 0.7 \\ 35 1.0 \\ 3$	$\begin{array}{cccc} 307 & 1.0 \\ 311 & 1.0 \\ 708 & 0.7 \\ 840 & 1.1 \end{array}$	$503 1.0 \\ 521 1.0 \\ 927 0.8 \\ 057 1.1$	$\begin{array}{cccc} 756 & 1.0 \\ 227 & 0.9 \\ 287 & 1.1 \end{array}$	$\begin{array}{cccc} 942 & 1.1 \\ 942 & 1.1 \\ 996 & 1.1 \\ 571 & 1.1 \end{array}$	170 512 950

TABLE 33. Staggered array of turbines tested in the Manchester basin at a tip speed ratio of $\gamma = 5.5$: Depth averaged turbulent viscosity. The value for the cells containing the turbines have been underlined

APPENDIX A

Production of Depth averaged data using VisIt

The following set of instructions demonstrate the procedure for generating depth averaged distributions from results files from code_saturne simulations using the VisIt visualisation software which can be freely downloaded from Lawrence Livermore National Laboratory¹. These procedures utilise version 2.5.2 of VisIt.

(1) load the datafile (an ensight gold format .case file) into VisIt.

000	F	ile open
📃 Host	localhost	
🗋 Path	/Users/dingram/Developer/D5a_result	s from David O/staggered/test20_TSR4
Filter	*	
🗹 Use "c	urrent working directory" by default Fi	le grouping Smart ‡ Remove paths
Directorie	25	Files
. (current (go up	directory) 1 directory level)	CHR.case chr.dissip.0001 chr.geo chr.pressure.0001 chr.scalar1.0001 chr.total_pressure.0001 chr.turbener.0001 chr.turbvisc.0001 chr.velocity.0001
Open file	as type: Guess from file name/extens	ion 🗘 Set default open options
Refres	h	OK Cancel

- (2) Add a *Psudo-colour* plot for the selected variable (in this case Velocity magnitude).
- (3) Add a *Data-binning* operator to the plot, this can be found on the **Operator** Attributes menu in the Analysis sub menu. Once selected the dataBinning window will open.

¹https://wci.llnl.gov/codes/visit/

A. PRODUCTION OF DEPTH AVERAGED DATA USING VISIT

000	Data	Binning ope	erator attributes		
Bin Definitions					
Dimensions		1D	*		
	imension 1	Dimens	on 2 Dimensi	on 3	
Bin based on	(• Variable	default 🔻	<u>ох</u> оу	∕oz
Number of bins	50				
Specify range					
Min	0				
Мах	1				
Behavior for data out	tside range	• Clamp	ODiscard		
Reduction Operator	A	verage			\$
Variable			default		▼
Value for bins with n	o data 0				
Make default			Load	Save	Reset

(4) Choose 2D and the select the z ordinate for the dimension 1 binning variable. Ensure that the specify range box is ticked and that the required range is entered.

Dimensions	Dimension 1	.D Dimensi	¢	ision 3	
Bin based on		Variable	default 🔻		⊖Y ⊙z
Number of bins	25				0.0-
Specify rang	e				
Min	-3.0				
	5.0				
Max Behavior for data o	2.0) Clamp	O Discard		
Max Behavior for data o eduction	2.0) Clamp	ODiscard		
Max Behavior for data o eduction Reduction Operato	2.0 utside range (•) Clamp age) Discard		
Max Behavior for data o eduction Reduction Operato Variable	2.0 utside range (•) Clamp age	O Discard	lt	
Max Behavior for data o eduction Reduction Operato Variable Value for bins with	2.0 utside range (• r Aver no data 0) Clamp age	O Discard	lt	

(5) Choose Dimension 2 and set the x ordinate as the binning variable. If needed tick the specify range box is ticked and enter the required range.

000	DataBinning operator attributes
Bin Definitions	
Dimensions	2D ‡
Dimens	ion 1 Dimension 2 Dimension 3
D: 1 1	
Bin based on	• Variable default • X Y Z
Number of bins 13	
Specify range	
Min -0.5	
Max 1	
Behavior for data outside ra	ange 💿 Clamp 🔿 Discard
Reduction	
Reduction Operator	Average +
Variable	default 💌
Value for bins with no data	0
Make default	Load Save Reset
Apply	Post Dismiss
	Post Distilliss

(6) Choose the Average reduction operator and change the selected variable from default to the same variable as was selected in step 2. All of the solution variables can be found under the Scalars entry in the Variables menu. Set the Value for bins with no data to -99

Dimensions	2D \$
Din	ension 1 Dimension 2 Dimension 3
Bin based on	● Variable default ▼ ○X ○Y ○Z
Number of bins 1	3
Specify range	
Min -	0.5
Max 1	
Behavior for data outsi	de range 💿 Clamp 🔷 Discard
Behavior for data outsi Reduction	de range 💿 Clamp 🛛 Discard
Behavior for data outsi Reduction Reduction Operator	de range Clamp Discard Average
Behavior for data outsi Reduction Reduction Operator Variable	de range Clamp Discard Average Velocity_magnitude
Behavior for data outsi Reduction Reduction Operator Variable Value for bins with no	de range Clamp Discard Average Velocity_magnitude
Behavior for data outsi Reduction Reduction Operator Variable Value for bins with no	de range Clamp Discard Average Velocity_magnitude
Behavior for data outsi Reduction Reduction Operator Variable Value for bins with no Make default	de range • Clamp Discard Average Velocity_magnitude data -99 Load Save

- (7) click on Apply and Dismiss
- (8) click on the Draw icon to display the plot.

Plots					
-	op(=) +/-	Delata	Nida (Shaw		
Add	Operators	Delete	Hide/Sriow	Draw	variables
	Velocity_ma	gnitude			
	Datas		×		
	Seud	ocolor			
Apply to	b	• active	e window	🔵 all w	indows
🗹 Appl	y operators	to all plot	S		
Appl	y subset sel	ections to	all plots		
		_			

If the plot contains values of -99 then there the bins are too small and some contain missing values, in this case reduced the number of bins are try again.

Dimensions	2D	*
Di	ension 1 Dimension 2 [Dimension 3
Bin based on	Variable defa	
Number of bins	9	
Specify range		
Min	3	
Max	E.	
Behavior for data outs eduction Reduction Operator	de range • Clamp Dise	card
Behavior for data outs eduction Reduction Operator Variable	de range Clamp Disc Average Veloci	card ty_magnitude
Behavior for data outs reduction Reduction Operator Variable Value for bins with nc	de range Clamp Dise Average Veloci data 0	card ty_magnitude v
Behavior for data outs teduction Reduction Operator Variable Value for bins with no	de range • Clamp Obse Average Veloci data 0	card ty_magnitude
Behavior for data outs teduction Reduction Operator Variable Value for bins with no Make default	de range • Clamp • Dise Average Veloci data 0	card ty_magnitude • .oad Save Reset

(9) Add a *Mesh* plot to the plotting window.

user: dingram Tue Aug 28 15:09:32 2012 To export the depth averaged information to a text file a *spreadsheet* plot can be used.

(1) Add a *Spreadsheet* plot and choose the same variable as that used for binning the data from the list of variables on the sub-menu. The *Spreadsheet* window will now be displayed.

	File	•	Edit	•	Operatio	ns 🔻
3D			Dis	play		
k=0	[0,0] ()=		Fo	rmat %1.	6f	
Norr	nal 🔾 X	⊖Y ⊙	z 🗌 🗆	Color	Default	
Show	in visualizati	on window				
₫т	racer plane		Patch outlin	e 🗌	Current ce	ll outline
			k=0			
	i=0	i=1	i=2	i=3	i=4	i=5
j=12	0.387189	0.388274	0.388668	0.389402	0.390395	0.391
j=11	0.383569	0.374598	0.371838	0.369559	0.365707	0.362
j=10	0.379205	0.374074	0.373256	0.372556	0.371340	0.370!
j=9	0.387946	0.386111	0.386568	0.387734	0.389529	0.391:
j=8	0.396689	0.390358	0.389156	0.389495	0.388203	0.387:
		•	•	•		
ariab	le		Velocity_r	nagnitude		

- (2) Enter the required numerical format in the *Format* box and press enter for all the tables included in this report either %1.4f, 4 decimal places floating point, or %1.2e, 2 decimal places exponent format, have been used.
- (3) uncheck the *Tracer plane* and *Patch outline* boxes.
- (4) Select the part of the table to be output, either by dragging the mouse over the cells or by using the Select All item on the Edit menu.
- (5) Use the Save as text ... item on the file menu to save the text file containing the spreadsheet.

APPENDIX B

Contents of the Accompanying CD

The data needed to run the cases presented in this report are included on an accompanying CD, which is also available as a .zip file. The following files are on the CD.

README: Description of the data on the CD

D5a.pdf: a .pdf file containing this report.

Single: directory containing the simulations for a single turbine tested in the EDF flume.

D5_Case.xml: Code_Saturne case file

usinv.f90: User subroutine initialising the single turbine case

ustsns.f90: User subroutine specifying the source terms for the actuator disks.

blade.txt: Blade definition file.

Circle.txt: Aerodynamic coefficients for a circular cylinder.

4415.txt: Aerodynamic coefficients for a NACA 4415 airfoil.

single.cgns: CGNS format grid file.

- **TSRx.x:** subdirectory containing results for the simulation at a tip speed ratio of $\gamma = x.x$.
- **Double:** directory containing the simulations for an infinite width array of two rows of turbines in series, tested by Manchester. Utilising symmetry planes to restrict the simulation to a single column of the array.

D5_Case.xml: Code_Saturne case file

usinv.f90: User subroutine initialising the double turbine case

ustsns.f90: User subroutine specifying the source terms for the actuator disks.

blade.txt: Blade definition file.

Circle.txt: Aerodynamic coefficients for a circular cylinder.

Goe804.txt: Aerodynamic coefficients for a GOE 804 airfoil.

test19.cgns: CGNS format grid file.

- **TSRx.x:** subdirectory containing results for the simulation at a tip speed ratio of $\gamma = x.x$.
- **Staggered:** directory containing the simulations for a seven turbine array of two rows of turbines in a staggered arrangement, tested by Manchester. But utilising a symmetry plane to halve the computational domain.

D5_Case.xml: Code_Saturne case file

- usinv.f90: User subroutine initialising the double turbine case
- **ustsns.f90:** User subroutine specifying the source terms for the actuator disks.

blade.txt: Blade definition file.

- **Circle.txt:** Aerodynamic coefficients for a circular cylinder.
- Goe804.txt: Aerodynamic coefficients for a GOE 804 airfoil.
- test20.cgns: CGNS format grid file.
- **TSRx.x:** subdirectory containing results for the simulation at a tip speed ratio of $\gamma = x.x$.
- **Double:** directory containing the simulations for an infinite width array of two rows of turbines in series, tested by Manchester. Utilising symmetry planes to restrict the simulation to a single column of the array.
- **Staggered:** directory containing the simulations for a seven turbine array of two rows of turbines in a staggered arrangement, tested by Manchester. But utilising a symmetry plane to halve the computational domain.

APPENDIX C

usinv.f90

Ţ Code_Saturne version 2.0.0-rc1 ! ------This file is part of the Code_Saturne Kernel, element of the Ţ Code_Saturne CFD tool. Т Copyright (C) 1998-2008 EDF S.A., France Ţ Ţ contact: saturne-support@edf.fr ļ The Code_Saturne Kernel is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Ţ as published by the Free Software Foundation; either version 2 of T the License, or (at your option) any later version. Ţ The Code_Saturne Kernel is distributed in the hope that it will be Т useful, but WITHOUT ANY WARRANTY; without even the implied warranty Ţ of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the T GNU General Public License for more details. T You should have received a copy of the GNU General Public License I along with the Code_Saturne Kernel; if not, write to the L T Free Software Foundation, Inc., T 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA T 1------

Module connectivity
Integer(8) :: nbcell(1000000,6)
Integer(8) con(1000000,6)
double precision clcd_val(1000)
contains
subroutine error_message(text)
 character (*) :: text
!if (irangp.le.0) then
 print*,text
!endif
 stop
 end subroutine error_message
End Module connectivity

Module turbine_design integer n_be :: nMax_elms_start(2) Integer Integer :: nMax_elms_stop(2) :: rotor_radius double precision double precision :: blade_scale double precision :: Frontal_Area(2) type :: b_section :: alpha double precision double precision :: cl double precision :: cd type(b_section), pointer :: next end type b_section type :: blade_element double precision :: rad double precision :: theta double precision :: chord integer :: rec_count character(30),pointer :: Bsection type (b_section), pointer :: ptr_bsection end type blade_element type :: AD_element :: rad double precision double precision . cnord :: twist :: elm_area :: ar :: chord double precision double precision double precision double precision :: dFX double precision :: dFY :: dFZ double precision double precision double precision :: frac_v :: nCel ! code saturne cell number integer :: Nrec1 integer :: Nrec2 integer type (b_section), pointer :: ptr_Belement1 type (b_section), pointer :: ptr_Belement2 end type AD_element type(AD_element), allocatable :: AD_position(:) type(blade_element), allocatable :: blade_position(:) End Module turbine_design subroutine usiniv & (idbia0 , idbra0 , & ndim , ncelet , ncel , nfac , nfabor , nfml , nprfml , & , lndfac , lndfbr , ncelbr , nnod & nvar , nscal , nphas , nideve , nrdeve , nituse , nrtuse , & & ifacel , ifabor , ifmfbr , ifmcel , iprfml , maxelt , lstelt , & ipnfac , nodfac , ipnfbr , nodfbr , &

```
idevel , ituser , ia
                                                              k
  xyzcen , surfac , surfbo , cdgfac , cdgfbo , xyznod , volume , &
  dt , rtp , propce , propfa , propfb , coefa , coefb , &
  rdevel , rtuser , ra
                          )
use turbine_design
use connectivity
! Purpose:
1 -----
    User subroutine.
1
    Initialize variables
! This subroutine is called at beginning of the computation
! (restart or not) before the loop time step
! This subroutine enables to initialize or modify (for restart)
     unkown variables and time step values
1
! rom and viscl values are equal to roO and visclO or initialize
! by reading the restart file
! viscls and cp variables (when there are defined) have no value
! excepted if they are read from a restart file
! Physical quantities are defined in the following arrays:
  propce (physical quantities defined at cell center),
  propfa (physical quantities defined at interior face center),
1
  propfa (physical quantities defined at border face center).
! Examples:
! propce(iel, ipproc(irom (iphas))) means rom (iel, iphas)
  propce(iel, ipproc(iviscl(iphas))) means viscl(iel, iphas)
1
! propce(iel, ipproc(icp (iphas))) means cp (iel, iphas)
! propce(iel, ipproc(ivisls(iscal))) means visls(iel, iscal)
! propfa(ifac, ipprof(ifluma(ivar))) means flumas(ifac, ivar)
! propfb(ifac, ipprob(irom (iphas))) means romb (ifac, iphas)
! propfb(ifac, ipprob(ifluma(ivar))) means flumab(ifac, ivar)
! Modification of the behaviour law of physical quantities (rom, viscl,
! viscls, cp) is not done here. It is the purpose of the user subroutine
! usphyv
! Cells identification
! Cells may be identified using the 'getcel' subroutine.
! The syntax of this subroutine is described in the 'usclim' subroutine,
! but a more thorough description can be found in the user guide.
```

1-----

C. USINV.F90

name	!type!mode		! role		
 idbia0	.! ! i	! ! <	! ! number of first free position in ia		
idbra0	· -	<	number of first free position in ra		
ndim	 i	<	I snatial dimension		
	. <u>.</u> I i	 I <	I number of extended (real + ghost) cells		
	· -	· · ·	I number of colls		
fac	: 1	: \ <	number of cerrs		
faham	: 1	: \	I number of houndary faces		
	: I 	· <	I number of boundary faces		
	! 1	! <	! number of families (group classes)		
nprimi	! 1	! <	! number of properties per family (group class)		
nod	! 1	! <	! number of vertices		
Indfac	! i	! <	! size of nodfac indexed array		
Indfbr	! i	! <	! size of nodfbr indexed array		
ncelbr	! i	! <	! number of cells with faces on boundary		
nvar	! i	! <	! total number of variables		
nscal	! i	! <	! total number of scalars		
nphas	! i	! <	! number of phases		
nideve, nrdeve	! i	! <	! sizes of idevel and rdevel arrays		
nituse, nrtuse	! i	! <	! sizes of ituser and rtuser arrays		
ifacel(2, nfac)	! ia	! <	! interior faces -> cells connectivity		
fabor(nfabor)	! ia	! <	! boundary faces -> cells connectivity		
fmfbr(nfabor)	! ia	! <	! boundary face family numbers		
ifmcel(ncelet)	! ia	! <	! cell family numbers		
iprfml	! ia	! <	! property numbers per family		
(nfml. nprfml)	!	!	!		
(maxelt	I i	I <	I max number of cells and faces (int/boundary)		
lstelt(maxelt)	 I ia		I work array		
ipnfac(nfac+1)	l ia	<	I interior faces -> vertices index (ontional)		
phiac(lindfac)	i ia Lia	· · ·	interior faces -> vertices index (optional)		
innfhm(nfaham+1)	: 1a	: \	hourdary faces -> wentices index (optional)		
philor (mabor+1)	: 1a	: <u> </u>	boundary faces -> vertices index (optional)		
lour pr (IndIpr)	: 1a	· <	: boundary faces -> vertices fist (optional)		
.aever(nideve)	: 1a	· <->	! integer work array for temporary development		
tuser(nituse)	! 1a	! <->	! user-reserved integer work array		
La(*)	! ia	!	! main integer work array		
kyzcen	! ra	! <	! cell centers		
(ndim, ncelet)	!	!	!		
surfac	! ra	! <	! interior faces surface vectors		
(ndim, nfac)	!	!	!		
surfbo	! ra	! <	! boundary faces surface vectors		
(ndim, nfabor)	!	!	!		
dgfac	! ra	! <	! interior faces centers of gravity		
(ndim, nfac)	!	!	!		
dgfbo	! ra	! <	! boundary faces centers of gravity		
(ndim, nfabor)	!	!	!		
xyznod	! ra	! <	! vertex coordinates (optional)		
(ndim. nnod)	!	!	!		
volume(ncelet)	l ra	! <	cell volumes		
it(ncelet)	l ra	 I <	time step (per cell)		
rtn(ncelet *)	. 1a ra	. 、 <	. computed variables at call contors at current		
. up(IICEIEL, ↑)	. <u>т</u> а	· · ·	. compared variables at cell centers at cullent		

```
! propce(ncelet, *)! ra ! <-- ! physical properties at cell centers</pre>
! propfa(nfac, *) ! ra ! <-- ! physical properties at interior face centers</pre>
                                                                     1
! propfb(nfabor, *)! ra ! <-- ! physical properties at boundary face centers</pre>
                                                                     Т
! coefa, coefb ! ra ! <-- ! boundary conditions
! (nfabor, *) ! ! !
! rdevel(nrdeve) ! ra ! <-> ! real work array for temporary development
! rtuser(nrtuse) ! ra ! <-> ! user-reserved real work array
! ra(*)
                ! ra ! --- ! main real work array
!_____!____!____!____!
     Type: i (integer), r (real), s (string), a (array), l (logical),
Т
          and composite types (ex: ra real array)
1
     mode: <-- input, --> output, <-> modifies data, --- work array
1
1===
implicit none
1______
! Common blocks
include "paramx.h"
include "pointe.h"
include "numvar.h"
include "optcal.h"
include "cstphy.h"
include "entsor.h"
include "parall.h"
include "period.h"
! Arguments
              ilelt, nlelt, nlelt2
integer
              idbia0 , idbra0
integer
              ndim , ncelet , ncel , nfac , nfabor
integer
integer
              nfml , nprfml
              nnod , lndfac , lndfbr , ncelbr
integer
integer
              nvar , nscal , nphas
integer
              nideve , nrdeve , nituse , nrtuse
integer
              ifacel(2,nfac) , ifabor(nfabor)
              ifmfbr(nfabor) , ifmcel(ncelet)
integer
              iprfml(nfml,nprfml), maxelt, lstelt(maxelt)
integer
              ipnfac(nfac+1), nodfac(lndfac)
integer
              ipnfbr(nfabor+1), nodfbr(lndfbr)
integer
              idevel(nideve), ituser(nituse), ia(*)
integer
double precision xyzcen(ndim,ncelet)
double precision surfac(ndim,nfac), surfbo(ndim,nfabor)
double precision cdgfac(ndim,nfac), cdgfbo(ndim,nfabor)
```

double precision xyznod(ndim,nnod), volume(ncelet)

```
C. USINV.F90
```

```
double precision dt(ncelet), rtp(ncelet,*), propce(ncelet,*)
double precision propfa(nfac,*), propfb(nfabor,*)
double precision coefa(nfabor,*), coefb(nfabor,*)
double precision rdevel(nrdeve), rtuser(nrtuse), ra(*)
! Local variables
logical :: switch1,switch2
real :: random
double precision, parameter :: pi = 3.1415926535897932384626433832795028841971693993751058209749445923
double precision, parameter :: RotorR = 0.135 ! metres
double precision zmax, zmin
double precision
                          angle_switch
double precision temprtp(ncelet,1)
double precision x_dist, y_dist, z_dist, radius, disc_patch, area_sum
integer
               idebia, idebra, impout (6), ii
integer
               ielt, iel, iutile, iel1, iel2, i, j, ival, ival2
integer
               ifac, inb, inb2, itest, n_passes, ipass,n,nbe,Nrec,Nfarm
integer(8)
               ihuge
integer, parameter
                          :: Nfarmax
                                       = 2 ! number of turbines modelled
double precision chord1, chord2, twist1, twist2, frac_val1,frac_val,radius1,radius2, v_small
double precision deg2rad, dist_diff, cell_size
Integer
               ifac2, n_of_f, jmax, jmin, isnbb, Number_Of_Faces, ifbn, nbelm
                ifind, iswitch1, iswitch2
Logical
type (b_section), pointer :: current, bucket
 1_____
! 1. Initialization of local variables
idebia = idbia0
idebra = idbra0
ihuge = 2.0e10
v_small = 1.0d-6
deg2rad = pi/180.0
rotor_radius = RotorR ! metres
do i = 1, ncel
  do j = 1, 6
     con(i,j) = -ihuge
     nbcell(i,j) = -ihuge
   enddo
enddo
!****************Find smallest cell size at inlet
cell_size = huge(1.0)
call getfbr('INLET', nlelt, lstelt)
nlelt2 = nlelt - 1
do ielt = 1, nlelt2
  ifac = lstelt(ielt)
  ifac2 =lstelt(ielt + 1)
  dist_diff = dabs( cdgfbo(2,ifac) - cdgfbo(2,ifac2) )
  if (cell_size > dist_diff) then
    cell_size = dist_diff
  endif
```

C. USINV.F90

```
enddo
print*,'smallest cell size = ',cell_size
1______
! 2. Unknown variables initialization:
I.
    ONLY done if there is no restart computation
1______
! --- Example: isca(1) is the variable number in RTP related to the first
          user-defined scalar variable
1
          rtp(iel,isca(1)) is the value of this variable in cell number
1
Т
          iel.
if (isuite.eq.0) then
! do ii = 1, 1
 ! impout(ii) = impusr(ii)
 !enddo
 !open(impout(1),file='test_result.dat')
1______
! 3. Building connectivity between particular indexed cell in the flow field and
   its local neighbour cells. For a hexahedral cell this involves 6 neighbours
do ifac = 1, nfac
    iel1 = ifacel(1, ifac)
    iel2 = ifacel(2,ifac)
    switch1 = .true.
    switch2 = .true.
    do i = 1, 6
      if ((switch1).and.(con(iel1,i).eq.(-ihuge) )) then
        con(iel1,i) = ifac
        switch1 = .false.
      endif
      if ((switch2).and.(con(iel2,i).eq.(-ihuge) )) then
        con(iel2,i) = ifac
        switch2 = .false.
      endif
    enddo
  enddo
!Create 'nbcell(iel,Number_Of_Faces)' which provides connectivity between a cell centre of cell 'iel'
!and 1 to 'Number_Of_Faces' neighbour cells over 1 to ncel mesh cells in the flow field for any general
!polyhedral mesh (note in this case this is hexahedral)
do iel = 1, ncel
  rtp(iel, isca(1)) = 0.0
  do ifac = 1,6
    if (con(iel,ifac).gt.(-ihuge)) then
```

```
C. USINV.F90
```

```
iel2 = ifacel(2,con(iel,ifac))
        iel1 = ifacel(1,con(iel,ifac))
        if (iel1.ne.iel) then
           nbcell(iel.ifac) = iel1
        endif
        if (iel2.ne.iel) then
           nbcell(iel,ifac) = iel2
        endif
      endif
   enddo
   enddo
 do i = 1, ncel
       rtp(iel, isca(1)) = 0.0
    enddo
1 ----
             _____
! Now setup rotor blade design assocaited with all turbines of the farm
blade_scale = 1.0
 allocate(AD_position(10000))
 allocate(blade_position(100))
 call read_blade_design(n_be)
 nbelm = 0
     Setup each of the Nfarm turbines associated with modelled tidal turbine farm
1
|-----
do Nfarm = 1,Nfarmax
 nMax_elms_start(Nfarm) = nbelm + 1
 area_sum = 0.d0
 if (Nfarm == 1) then
  call getcel('X < 0.135 and X > -0.135 and Y > -0.135 &
            and Y < 0.135 and Z > -0.0014 and Z < 0.0014', &
            nlelt,lstelt)
  zmin = -0.001401; zmax = 0.001401
 else if (Nfarm == 2) then
  call getcel('X < 0.135 and X > -0.135 and Y > -0.135 &
            and Y < 0.135 and Z > 2.1586 and Z < 2.1614',
                                                    &
            nlelt,lstelt)
  zmin = 2.1586; zmax = 2.1614
 endif
 do ilelt = 1, nlelt
   iel = lstelt(ilelt)
   x_dist = xyzcen(1,iel)
   y_dist = xyzcen(2,iel)
   z_dist = xyzcen(3,iel)
   radius = dsqrt((x_dist * x_dist) + (y_dist * y_dist) )
   if ((radius <= rotor_radius).and.(z_dist > zmin).and.(z_dist < zmax)) then
     do i = 1, 6
      if (con(iel,i) > -1) then
       disc_patch = surfac(3,con(iel,i))
       if (disc_patch > 0.d0) then
```

```
area_sum = area_sum + disc_patch * 0.5
                      ! used as a maker in debugging
        rtp(iel, isca(1)) = 10.0
       endif
      endif
      enddo
    endif
 enddo
Frontal_Area(Nfarm) = area_sum
print*,'time zero area_sum = ',Frontal_Area(Nfarm),' Turbine number = ',Nfarm
! ------
! Now setup the Actuator Disc
| _____
 if (Nfarm == 1) then
  call getcel('X < 0.135 and X > -0.135 and Y > -0.135 &
             and Y < 0.135 and Z > -0.0014 and Z < 0.0014',
                                                      &
            nlelt, lstelt)
  zmin = -0.001401;zmax = 0.001401
else if (Nfarm == 2) then
  call getcel('X < 0.135 and X > -0.135 and Y > -0.135 &
             and Y < 0.135 and Z > 2.1586 and Z < 2.1614', &
            nlelt, 1stelt)
 zmin = 2.1586; zmax = 2.1614
endif
 do ilelt = 1, nlelt
   iel = lstelt(ilelt)
   x_dist = xyzcen(1,iel)
   y_dist = xyzcen(2,iel)
   z_dist = xyzcen(3,iel)
   radius = dsqrt((x_dist * x_dist) + (y_dist * y_dist) )
    ! ------
    ! ----Create Actuactor Disc from avialable mesh cells
    | ------
    if ((radius <= rotor_radius).and.(z_dist > zmin).and.(z_dist < zmax)) then
     nbelm = nbelm + 1
     AD_position(nbelm)%nCel = iel
     AD_position(nbelm)%rad = radius
     | _____
     ! find frontal area of cell and azimuthal angles
        about the centre on the actuator disc
     !
       -----
     1
     area_sum = 0.d0
     do i = 1, 6
       if (con(iel,i) > -1) then
        disc_patch = surfac(3,con(iel,i))
        if (disc_patch > 0.d0) then
```

```
C. USINV.F90
```

```
area_sum = area_sum + disc_patch * 0.5
   endif
 endif
enddo
AD_position(nbelm)%elm_area = area_sum
AD_position(nbelm)%azim_deg = datan2(y_dist,x_dist)
AD_position(nbelm)%frac_v = 0.0
! -----
! Calculate blade design chord and twist from blade
   design table
1 -
   _____
                      _____
ifind = .true.
do n = 1, n_be - 1
    radius1 = blade_scale * (blade_position(n)%rad)
    radius2 = blade_scale * (blade_position(n + 1)%rad)
    ! ----- set up Actuator Disc elements------
    if ( (radius >= radius1) .and. (radius <= radius2)) then
      ifind = .false.
      frac_val1 = radius2 - radius1
      if (dabs(frac_val1) < v_small) then
         call error_message("Error with blade design table")
      endif
      frac_val = (radius - radius1)/frac_val1
      AD_position(nbelm)%frac_v = frac_val
      chord1 = blade_scale * (blade_position(n)%chord)
      chord2 = blade_scale * (blade_position(n+1)%chord)
      AD_position(nbelm)%chord = chord1 + (chord2 - chord1) * frac_val
      twist1 = deg2rad * (blade_position(n)%theta)
      twist2 = deg2rad * (blade_position(n+1)%theta)
      AD_position(nbelm)%twist = twist1 + (twist2 - twist1) * frac_val
      ! --
          _____
      nullify(AD_position(nbelm)%ptr_Belement1)
      allocate(AD_position(nbelm)%ptr_Belement1)
      AD_position(nbelm)%ptr_Belement1 = blade_position(n)%ptr_bsection
      Nrec = blade_position(n)%rec_count
      AD_position(nbelm)%Nrec1 = Nrec
      current => AD_position(nbelm)%ptr_Belement1
      bucket => blade_position(n)%ptr_bsection
      do i = 1, Nrec
        current%alpha = deg2rad * bucket%alpha
        current%cl = bucket%cl
        current%cd
                    = bucket%cd
        allocate(current%next)
        nullify( current%next%next )
        current => current%next
        bucket => bucket%next
      enddo
      ! ----
      nullify(AD_position(nbelm)%ptr_Belement2)
      allocate(AD_position(nbelm)%ptr_Belement2)
      AD_position(nbelm)%ptr_Belement2 = blade_position(n+1)%ptr_bsection
      Nrec = blade_position(n+1)%rec_count
      AD_position(nbelm)%Nrec2 = Nrec
```

100

L

```
current => AD_position(nbelm)%ptr_Belement2
  bucket => blade_position(n+1)%ptr_bsection
  do i = 1, Nrec
    current%alpha = deg2rad * bucket%alpha
               = bucket%cl
    current%cl
    current%cd
                = bucket%cd
    allocate(current%next)
    nullify( current%next%next )
    current => current%next
    bucket => bucket%next
  enddo
         _____
  1 ----
  exit
else if (radius < radius1) then
    AD_position(nbelm)%chord = blade_scale * blade_position(1)%chord
    AD_position(nbelm)%twist = deg2rad * blade_position(1)%theta
    ! ---
    nullify(AD_position(nbelm)%ptr_Belement1)
    allocate(AD_position(nbelm)%ptr_Belement1)
    AD_position(nbelm)%ptr_Belement1 = blade_position(1)%ptr_bsection
    Nrec = blade_position(1)%rec_count
    AD_position(nbelm)%Nrec1 = Nrec
    current => AD_position(nbelm)%ptr_Belement1
    bucket => blade_position(1)%ptr_bsection
    do i = 1, Nrec
     current%alpha = deg2rad * bucket%alpha
     current%cl = bucket%cl
current%cd = bucket%cd
     allocate(current%next)
     nullify( current%next%next )
     current => current%next
     bucket => bucket%next
    enddo
    ! ------
    nullify(AD_position(nbelm)%ptr_Belement2)
    allocate(AD_position(nbelm)%ptr_Belement2)
    AD_position(nbelm)%ptr_Belement2 = blade_position(1)%ptr_bsection
    Nrec = blade_position(1)%rec_count
    AD_position(nbelm)%Nrec2 = Nrec
    current => AD_position(nbelm)%ptr_Belement2
    bucket => blade_position(1)%ptr_bsection
    do i = 1, Nrec
     current%alpha = deg2rad * bucket%alpha
     current%cl = bucket%cl
     current%cd
                 = bucket%cd
     allocate(current%next)
     nullify( current%next%next )
     current => current%next
     bucket => bucket%next
    enddo
    | ------
endif
  -----
1 -
```

C. USINV.F90

```
enddo
  ! if (ifind) then
  1
      print*, 'element ',nbelm,' at radius = ',AD_position(nbelm)%rad
  ! endif
   endif
       _____
   ! ----
   I .....
   ! ------
 enddo
1-----
! enddo -- Setup each of the Nfarm turbines associated with modelled tidal turbine farm
  _____
                  _____
1 -
! ----start and stop element no for each turbine
 nMax_elms_stop(Nfarm) = nbelm
I ------
                  _____
 print*,' Turbine number of farm = ',Nfarm
 print*,' nMax_elms start = ',nMax_elms_start(Nfarm)
 print*, ' nMax_elms stop = ',nMax_elms_stop(Nfarm)
enddo
Т
 do n = 1,nMax_elms
  Nrec = AD_position(n)%Nrec1
I
  radius =
           AD_position(n)%rad
1
   current => AD_position(n)%ptr_Belement1
   do i = 1, Nrec
1
   write(impout(1),"(4g17.9)") radius,current%alpha, &
    current%cl,current%cd
    current => current%next
   print*, radius, current%alpha, &
    current%cl,current%cd
    current => current%next
1
   enddo
! enddo
 1 ______
 ! Close files at final time step
 ! ------
  !if (irangp.le.0) then
   !do ii = 1, 1
   ! close(impout(ii))
   ! enddo
  !endif
 | -----
             _____
 ! Close files at final time step
 ! -----
 endif ! *******end of if block of isuite if block
print*,'end of usinv'
return
contains
```

```
subroutine read_blade_design(n)
use turbine_design
implicit none
type(b_section), pointer :: current, previous
double precision rad, theta, chord, dummy
integer n, itd ,ic,isec
character a_nam1 * 30
character a_nam2 * 30
rad = 1.0
n = 0
open(unit=9,FILE='blade.txt',status='old')
do while(rad > 0)
 read(9,*)rad,theta,chord,dummy,a_nam1,a_nam2
 if (rad > 0) then
  n = n + 1
  blade_position(n)%rad = rad
  blade_position(n)%theta = theta
  blade_position(n)%chord = chord
  dummy = dummy * 100.0
  if (mod(dummy, 1.0) < 0.5) then
     itd = int(dummy)
  else
     itd = int(dummy) + 1
  endif
  allocate(blade_position(n)%Bsection)
  blade_position(n)%Bsection = a_nam1
  call read_blade_section(n,itd,blade_position(n))
  endif
enddo
close(unit=9)
return
end subroutine read_blade_design
1_____
subroutine read_blade_section(ibdpos,ithk, bld_ptr)
 use turbine_design
 implicit none
 type(blade_element)
                         :: bld_ptr
 type (b_section), pointer :: current
 double precision alpha,cl,cd
 integer
             count, ithk_chd,ithk,ibld, ichks,ic2
 integer
             new_cnt, ithknew, ibdpos
 character nam_given *20
 character file_type *6
 character file_name * 30
 character file_name1 * 30
 character icheck * 2
 logical ex, swit
 integer, parameter :: no_of_bsecs = 2
  integer, parameter :: lift_first = 1 ! 1 is for yes otherwise no
 file_type = '.txt'
```

C. USINV.F90

```
swit
         = .true.
nam_given = bld_ptr%Bsection
count = index(nam_given,' ') - 1
file_name = nam_given(1:count) // file_type
if ((ithk > 9).and.(ithk < 100)) then
          = nam_given(count-1:count)
  icheck
 read(icheck,*) ithk_chd
  write(icheck,'(i2)')ithk_chd
  file_name = nam_given(1:count-2) &
     // icheck// file_type
else
  ithk_chd = ithk
          = .false.
  swit
  inquire(FILE= file_name,exist= ex)
  if (ex.eqv..true.) then
    print*,file_name,' found'
  else
   print*,'Error no ',file_name,' file included'
   stop
   endif
endif
! ----- Select the necessary blade section files ----
if (swit) then
do ichks = 1, no_of_bsecs
 ithknew = ithk_chd
  do while(ithknew > 9)
  inquire(FILE= file_name,exist= ex)
  if (ex.eqv..true.) then
    print*,file_name,' found'
     exit
   endif
  ithknew = ithknew - 1
  write(icheck,'(i2)')ithknew
  file_name = nam_given(1:count-2) &
    // icheck// file_type
  enddo
  if (ex .eqv..false.) then
   print*,'warning ',file_name,ibdpos
  else
   exit
  endif
 enddo
endif
·····
 allocate(bld_ptr%ptr_bsection)
 if (ex) then
  !print*,'the file is ',file_name
  open(unit=10,FILE= file_name,status='old')
  current => bld_ptr%ptr_bsection
  alpha = 0.0
  count = 1
  do
   if ( lift_first == 1) then
```

```
read(10,*)alpha,cl,cd
            else
               read(10,*)alpha,cd,cl
            endif
            if (alpha == -999) then
            count = count - 1
             exit
            endif
            current%alpha = alpha
            current%cl = cl
            current%cd = cd
            allocate( current%next )
            count = count + 1
            current%next%alpha = -999
            current%next%cl = -999
            current%next%cd = -999
            nullify( current%next%next )
            current => current%next
          enddo
          close(unit=10)
         else
            count = 0
            current => bld_ptr%ptr_bsection
            current%alpha = -999
            current%cl = -999
current%cd = -999
            allocate( current%next )
            nullify( current%next%next )
         endif
         |-----
         bld_ptr%rec_count = count
        return
       end subroutine read_blade_section
        1_____
end subroutine usiniv
```

APPENDIX D

ustsns.f90

Ţ Code_Saturne version 2.0.1 ! ------This file is part of the Code_Saturne Kernel, element of the Ţ Code_Saturne CFD tool. Т Copyright (C) 1998-2009 EDF S.A., France Ţ Ţ contact: saturne-support@edf.fr ļ The Code_Saturne Kernel is free software; you can redistribute it Ţ and/or modify it under the terms of the GNU General Public License T as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Ţ The Code_Saturne Kernel is distributed in the hope that it will be Т useful, but WITHOUT ANY WARRANTY; without even the implied warranty Ţ of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the T GNU General Public License for more details. T You should have received a copy of the GNU General Public License L along with the Code_Saturne Kernel; if not, write to the T T Free Software Foundation, Inc., Т 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA T

subroutine ustsns &

1-----

(idbia0, idbra0, & ndim , ncelet , ncel , nfac , nfabor , nfml , nprfml , & nnod , lndfac , lndfbr , ncelbr , & nvar , nscal , nphas , ncepdp , ncesmp , & nideve , nrdeve , nituse , nrtuse , & ivar , iphas , & ifacel , ifabor , ifmfbr , ifmcel , iprfml , maxelt , lstelt , & ipnfac , nodfac , ipnfbr , nodfbr , & icepdc , icetsm , itypsm , & idevel , ituser , ia X. ,

```
xyzcen , surfac , surfbo , cdgfac , cdgfbo , xyznod , volume , &
  dt , rtpa , propce , propfa , propfb ,
                                                              &
  coefa , coefb , ckupdc , smacel ,
                                                              x
                                                              &
  crvexp , crvimp ,
       , xam
                                                              &
  dam
        ,w2 ,w3
                          ,w4 ,w5 ,w6 ,
  w1
                                                              Х.
  rdevel , rtuser , ra
                          )
           ! Purpose:
1 _____
    User subroutine.
1
    Additional right-hand side source terms for velocity components equation
I.
    (Navier-Stokes)
! Usage
1 ____
! The routine is called for each velocity component. It is therefore necessary
! to test the value of the variable ivar to separate the treatments of the
! components iu(iphas), iv(iphas) or iw(iphas).
! The additional source term is decomposed into an explicit part (crvexp) and
! an implicit part (crvimp) that must be provided here.
! The resulting equation solved by the code for a velocity component u is:
! rho*volume*du/dt + .... = crvimp*u + crvexp
! Note that crvexp and crvimp are defined after the Finite Volume integration
! over the cells, so they include the "volume" term. More precisely:
  - crvexp is expressed in kg.m/s2
  - crvimp is expressed in kg/s
L
! The crvexp and crvimp arrays are already initialized to 0 before entering the
! the routine. It is not needed to do it in the routine (waste of CPU time).
! For stability reasons, Code_Saturne will not add -crvimp directly to the
! diagonal of the matrix, but Max(-crvimp,0). This way, the crvimp term is
! treated implicitely only if it strengthens the diagonal of the matrix.
! However, when using the second-order in time scheme, this limitation cannot
! be done anymore and -crvimp is added directly. The user should therefore test
! the negativity of crvimp by himself.
! When using the second-order in time scheme, one should supply:
   - crvexp at time n
1
   - crvimp at time n+1/2
! The selection of cells where to apply the source terms is based on a getcel
! command. For more info on the syntax of the getcel command, refer to the
! user manual or to the comments on the similar command getfbr in the routine
```

D. USTSNS.F90

! usclim.

: ! Arguments !			
: ! name !	 !type !	 !mode ! !	
! idbia0	· ! i	! < !	number of first free position in ia !
! idbra0	! i	. <	! number of first free position in ra !
! ndim	! i	. <	spatial dimension !
! ncelet	! i	! <	number of extended (real + ghost) cells !
! ncel	! i	. <	! number of cells !
! nfac	! i	! <	! number of interior faces !
! nfabor	! i	! <	! number of boundary faces !
! nfml	! i	! < !	! number of families (group classes) !
! nprfml	! i	. <	! number of properties per family (group class) !
! nnod	! i	<	number of vertices
! lndfac	! i	. <	size of nodfac indexed arrav
! lndfbr	! i	! < !	size of nodfbr indexed arrav
! ncelbr	! i	! < !	number of cells with faces on boundarv !
! nvar	- ! i	! < !	! total number of variables !
! nscal	! i	<	total number of scalars
! nphas	! i	<	number of phases
! ncepdp	 ! i	<	number of cells with head loss terms
! ncssmp	 ! i	<	number of cells with mass source terms
! nideve. nrdeve	 ! i	<	sizes of idevel and rdevel arrays
! nituse, nrtuse	 ! i	<	sizes of ituser and rtuser arrays
! ivar	 ! i	<	index number of the current variable
iphas	 ! i	<	index number of the current phase
ifacel(2, nfac)	!ia	<	interior faces -> cells connectivity
<pre>ifabor(nfabor)</pre>	! ia	<	boundary faces -> cells connectivity
<pre>! ifmfbr(nfabor)</pre>	! ia	<	boundary face family numbers
<pre>ifmcel(ncelet)</pre>	! ia	<	cell family numbers
iprfm]	! ia		property numbers per family
(nfml. nprfml)	1		
! maxelt	!i	! <	! max number of cells and faces (int/boundary) !
lstelt(maxelt)	 I ia	I	work array
<pre>ipnfac(nfac+1)</pre>	ia.	I < I	interior faces -> vertices index (optional)
<pre>! nodfac(lndfac)</pre>	ia.	· · ·	interior faces -> vertices list (optional)
<pre>ipnfbr(nfabor+1)</pre>	! ia	<	boundary faces -> vertices index (optional)
<pre>! nodfbr(lndfbr)</pre>	l ia	<	boundary faces -> vertices list (optional)
icepdc(ncepdp)	! ia	<	index number of cells with head loss terms
<pre>! icetsm(ncesmp)</pre>	! ia	<	index number of cells with mass source terms
! itvpsm	! ia	<	type of mass source term for each variable
! (ncesmp.nvar)	!	!	(see ustsma)
! idevel(nideve)	! ia	! < !	integer work array for temporary developmement !
! ituser(nituse	! ia	! <	user-reserved integer work array
! ia(*)	! ia	! !	main integer work array
! xvzcen	! ra	! < !	cell centers
(ndim. ncelet)	1	 I I	
! surfac	Ira	! < !	interior faces surface vectors
! (ndim. nfac)	u !		
! surfbo	Ira	! < !	boundary faces surface vectors
. 241100	. <u>.</u> u	• •	

D. USTSNS.F90

```
! (ndim, nfavor) ! !
                             . !
! cdgfac ! ra ! <-- ! interior faces centers of gravity
! (ndim, nfac) ! ! !
! cdgfbo ! ra ! <-- ! boundary faces centers of gravity
! (ndim, nfabor) ! ! !
! xyznod ! ra ! <-- ! vertex coordinates (optional)
! (ndim, nnod) ! ! !
! volume(ncelet) ! ra ! <-- ! cell volumes
! dt(ncelet) ! ra ! <-- ! time step (per cell)
! rtpa</pre>
                  ! ra ! <-- ! calculated variables at cell centers</pre>
! rtpa
! (ncelet, *) ! ! (preceding time steps)
! propce(ncelet, *)! ra ! <-- ! physical properties at cell centers</pre>
! propfa(nfac, *) ! ra ! <-- ! physical properties at interior face centers</pre>
! propfb(nfabor, *)! ra ! <-- ! physical properties at boundary face centers</pre>
! coefa, coefb ! ra ! <-- ! boundary conditions
! (nfabor, *) ! ! !</pre>
! ckupdc(ncepdp,6) ! ra ! <-- ! head loss coefficient</pre>
           ! ra ! <-- ! value associated to each variable in the mass
! smacel
! (ncesmp,nvar) ! ! source terms or mass rate (see ustsma)
! crvexp ! ra ! --> ! explicit part of the source term
! crvimp
                 ! ra ! --> ! implicit part of the source term

      ! crvimp
      ! ra ! --- ! work array

      ! dam(ncelet)
      ! ra ! --- ! work array

      ! xam(nfac,2)
      ! ra ! --- ! work array

! w1,2,3,4,5,6 ! ra ! --- ! work arrays
! (ncelet) ! ! ! (computation of pressure gradient)
! rdevel(nrdeve) ! ra ! <-> ! real work array for temporary developpement
! rtuser(nituse ! ra ! <-- ! user-reserved real work array
! ra(*) ! ra ! --- ! main real work array
!_____!___!____!____!____!
     Type: i (integer), r (real), s (string), a (array), l (logical),
          and composite types (ex: ra real array)
1
     mode: <-- input, --> output, <-> modifies data, --- work array
1
1______
 use turbine_design
 use connectivity
  implicit none
1______
! Common blocks
|_____
include "paramx.h"
include "pointe.h"
include "numvar.h"
include "entsor.h"
include "optcal.h"
include "cstphy.h"
include "parall.h"
include "period.h"
```

1______

```
! Arguments
```

```
integer
                idbia0 , idbra0
integer
                ndim , ncelet , ncel , nfac , nfabor
                       , nprfml
                nfml
integer
integer
                nnod
                       , lndfac , lndfbr , ncelbr
integer
                nvar , nscal , nphas
integer
                ncepdp , ncesmp
integer
                nideve , nrdeve , nituse , nrtuse
integer
                ivar , iphas
                ifacel(2,nfac) , ifabor(nfabor)
integer
                ifmfbr(nfabor) , ifmcel(ncelet)
integer
integer
                iprfml(nfml,nprfml), maxelt, lstelt(maxelt)
integer
                ipnfac(nfac+1), nodfac(lndfac)
integer
                ipnfbr(nfabor+1), nodfbr(lndfbr)
integer
                icepdc(ncepdp)
                 icetsm(ncesmp), itypsm(ncesmp,nvar)
integer
                idevel(nideve), ituser(nituse), ia(*)
integer
double precision xyzcen(ndim,ncelet)
double precision surfac(ndim,nfac), surfbo(ndim,nfabor)
double precision cdgfac(ndim,nfac), cdgfbo(ndim,nfabor)
double precision xyznod(ndim,nnod), volume(ncelet)
double precision dt(ncelet), rtpa(ncelet,*)
double precision propce(ncelet,*)
double precision propfa(nfac,*), propfb(nfabor,*)
double precision coefa(nfabor,*), coefb(nfabor,*)
double precision ckupdc(ncepdp,6), smacel(ncesmp,nvar)
double precision crvexp(ncelet), crvimp(ncelet)
double precision dam(ncelet ), xam(nfac ,2)
double precision w1(ncelet),w2(ncelet),w3(ncelet)
double precision w4(ncelet),w5(ncelet),w6(ncelet)
double precision rdevel(nrdeve), rtuser(nrtuse), ra(*)
! Local variables
character*80
                chaine
integer
                idebia, idebra
               iel, ipcrom, ipp, iutile, ifac, i, Nfarm
integer
               ilelt, nlelt,iel1,iel2, nold_tstep,Nrec,ii,impout(6)
integer
               :: ncall = 0
                                                                              ! fortran static variable
integer
double precision ckp, qdm, x_dist, y_dist, radius, disc_patch, z_dist
double precision F_prandtl, tval1,tval2, density, chord, frac_val, elm_area, azim_ang
double precision ux, uy, uz, u_theta, phi, cl, cd, cl1, cl2,cd1
double precision cd2,alpha,alpha1
double precision rad2deg,val_d, W_rel2, W_rel
double precision Cn_2D, Ct_2D, Cn_3D, Ct_3D, dF_theta, dF_z, dF_cel_theta, dF_cel_z, k_value
double precision accm_T,accm_P, C_T,C_p
double precision, parameter :: pi = 3.1415926535897932384626433832795028841971693993751058209749445923078164062
double precision, parameter :: U_inf = 0.45 ! m/s
double precision, parameter :: omega = 15.0 ! rotational speed of turbine in radians per second
                      :: Nb = 3 ! number of blades with the turbine
integer, parameter
```

```
D. USTSNS.F90
```

```
integer, parameter
                   :: Nfarmax
                               = 2 ! number of turbines modelled
Logical, parameter
                    :: iflow
                              = .true. ! clockwise rotation from upstream & axial flow in
type (b_section), pointer :: ptr_bsection
             ichk
Logical
! blade design variables
integer n, nbelm
type(b_section), pointer :: current, previous, check
1_____
 ! -- setup output files --
  do ii = 1,3
    impout(ii) = impusr(ii)
   enddo
   open(impout(1),file='CT_Cp_results1.dat')
   open(impout(2),file='CT_Cp_results2.dat')
   open(impout(3),file='Clcdmap.dat')
 | ------
1______
! 1. Initialization
1______
idebia = idbia0
idebra = idbra0
ncall = ncall + 1
rad2deg = 180.0/pi
ipp = ipprtp(ivar)
iphas = 1
if(iwarni(ivar).ge.1) then
 chaine = nomvar(ipp)
 write(nfecra,1000) chaine(1:8)
endif
ipcrom = ipproc(irom (iphas))
_____
! 2. Calculating current momentum blade element forces
1______
if ( ncall == 1) then
do Nfarm = 1, Nfarmax
   accm_T = 0.0
   accm_P = 0.0
 do nbelm = nMax_elms_start(Nfarm), nMax_elms_stop(Nfarm)
          = AD_position(nbelm)%nCel
   iel
   x_dist
         = xyzcen(1,iel)
   y_dist = xyzcen(2,iel)
   z_dist = xyzcen(3,iel)
   density = propce(iel,ipcrom)
```

```
112
```

```
radius = AD_position(nbelm)%rad
    chord = AD_position(nbelm)%chord
    frac_val = AD_position(nbelm)%frac_v
    elm_area = AD_position(nbelm)%elm_area
    azim_ang = AD_position(nbelm)%azim_deg
    ! ------
                                     _____
    ! Calculate blade element forces in blade fixed coordinates
    | -----
      | ------
      ! Note ux,uy,uz are in flow fixed coords
      ! -----
         = rtpa(iel, iu(iphas) )
    ux
         = rtpa(iel, iv(iphas) )
    uy
         = rtpa(iel, iw(iphas) )
    uz
      ! -----
      ! Note u_theta is equiv to uy in in blade fixed coordinates
      ! -----
   if (iflow) then
   uz = -uz
   endif
!if(ntcabs > 137) then
!print*,'step1',radius,frac_val,ux,uy,uz
!endif
    u_theta = - (uy * dcos(azim_ang)) + (ux * dsin(azim_ang)) + (omega * radius)
          = datan2(uz, u_theta)
    phi
    alpha = phi - AD_position(nbelm)%twist
    Nrec
          = AD_position(nbelm)%Nrec1
    if (Nrec == 0) then
    print*,'Nrec = ',Nrec
    print*, 'radius = ', radius,' twist = ', AD_position(nbelm)%twist, &
         'phi = ',phi,' nbelm = ',nbelm
    stop
    endif
    ptr_bsection => AD_position(nbelm)%ptr_Belement1
!if(ntcabs > 137) then
!print*,'step2',u_theta,phi,alpha
!endif
    call find_cl_cd(alpha,Nrec,ptr_bsection,cl1,cd1,ichk)
    !if (ichk) then
    ! print*,'1st ptr'
    ! print*, 'radius = ', radius
    !endif
    Nrec
           = AD_position(nbelm)%Nrec2
    if (Nrec == 0) then
    print*,'Nrec = ',Nrec
    print*,'radius = ',radius,' twist = ',AD_position(nbelm)%twist, &
         'phi = ',phi,' nbelm = ',nbelm
    stop
    endif
!if(ntcabs > 137) then
!print*,'step3',cl1,cd1
!endif
```

```
D. USTSNS.F90
```

```
ptr_bsection => AD_position(nbelm)%ptr_Belement2
   call find_cl_cd(alpha,Nrec,ptr_bsection,cl2,cd2,ichk)
    !if (ichk) then
    ! print*,'2nd ptr'
    1
      mpout(1),"(i5,2g17.9)") ntcabs,C_T,C_pprint*,'radius = ',radius
    !endif
    cl = cl1 + frac_val * (cl2 - cl1)
    cd = cd1 + frac_val * (cd2 - cd1)
    !********** recoding L/D values on the disc ******
   if (cd > 0.0) then
     clcd_val(nbelm) = cl/cd
    else
     clcd_val(nbelm) = 0.0
    endif
    Cn_2D = cl * dcos(phi) + cd * dsin(phi)
   Ct_2D = cl * dsin(phi) - cd * dcos(phi)
    ! -----
    ! Calculating the Prandtl Tip Loss factor F_prandtl
    | _____
   if (dabs(radius) < tiny(1.0)) call error_message("error1 ustsns function")
   tval1 = Nb * (1.0 - rotor_radius/radius)
   tval2 = 2.0 * dsin(phi)
!if(ntcabs > 137) then
!print*,'step4',Cn_2D,Ct_2D,tval1,tval2
!endif
    if (dabs(tval2) > tiny(1.0)) then
     F_prandtl = (2.0/pi) * dacos(dexp(tval1/tval2))
     if ((F_prandtl < 0).or.(F_prandtl > 1.0)) call error_message("error2 ustsns function")
    else
    F_{prandtl} = 1.0
    endif
!if(ntcabs > 137)then
!print*,'step5',F_prandtl
!endif
   Cn_3D
          = F_prandtl * Cn_2D
   Ct_{3D} = F_{prandtl} * Ct_{2D}
    ! -----
    ! Note W_rel2 = (uz * uz) + (u_theta * u_theta) has not been included here
    ! since source terms crimpi & crvexpi require k * W_rel2 format for forces
    | _____
   !if(ntcabs > 137)then
!print*,'step6',radius
!endif
   dF_cel_theta = Nb * dF_theta * elm_area/(2.0 * pi * radius)
   dF_cel_z = Nb * dF_z * elm_area/(2.0 * pi * radius)
    ! ------
     Convert blade element forces into flow fixed coordinates
    !
    | -----
    AD_position(nbelm)%dFX = - dF_cel_theta * dsin(azim_ang)
   AD_position(nbelm)%dFY = dF_cel_theta * dcos(azim_ang)
```

```
if (iflow) then
      AD_position(nbelm)%dFZ = dF_cel_z
    else
      AD_{position(nbelm)%dFZ} = - dF_{cel_z}
    endif
    W_{rel2} = (u_{theta} * u_{theta}) + (uz * uz)
    accm_T = accm_T + (dF_cel_z * W_rel2)
    accm_P = accm_P + ( radius * omega * dF_cel_theta * W_rel2 )
 enddo
    C_T = accm_T/(0.5 * density * Frontal_Area(Nfarm) * U_inf * U_inf)
    C_p = accm_P/(0.5 * density * Frontal_Area(Nfarm) * U_inf * U_inf * U_inf)
    if (Nfarm == 1) then
      write(impout(1),"(2i5,2g17.9)") ntcabs,Nfarm,C_T,C_p
    else
     write(impout(2),"(2i5,2g17.9)") ntcabs,Nfarm,C_T,C_p
    endif
enddo ! end of loop for Nfarm
endif
1_____
! 2. Example of arbitrary source term for component u:
                           S = A * u + B
Ţ
           appearing in the equation under the form:
Ţ
!
                     rho*du/dt = S (+ standard Navier-Stokes terms)
!In the following example:
! A = -rho*CKP
! B = XMMT
!with:
! CKP = 1.D0 [1/s ] (return term on velocity)
! MMT = 100.D0 [kg/m2/s2] (momentum production by volume and time unit)
!which yields:
  crvimp(iel) = volume(iel)* A = - volume(iel)*(rho*CKP )
!
    crvexp(iel) = volume(iel)* B = volume(iel)*(XMMT
                                                     )
1
| ------
! It is quite frequent to forget to remove this example when it is
! not needed. Therefore the following test is designed to prevent
! any bad surprise.
!iutile = 0
!if(iutile.eq.0) return
```

D. USTSNS.F90

```
! -----
 _____
! Calculate the momentum source terms Sx, Sy and Sz for actuator disc representation
| -----
!if(ntcabs > 137) then
!print*,'step7'
!endif
 do nbelm = 1, nMax_elms_stop(Nfarmax)
   iel = AD_position(nbelm)%nCel
ux = rtpa(iel, iu(iphas) )
           = rtpa(iel, iv(iphas) )
   uy
           = rtpa(iel, iw(iphas) )
    uz
   radius = AD_position(nbelm)%rad
    azim_ang = AD_position(nbelm)%azim_deg
   u_theta = - (uy * dcos(azim_ang)) + (ux * dsin(azim_ang)) + (omega * radius)
    W_{rel2} = (u_{theta} * u_{theta}) + (uz * uz)
    !-----Sx source term -----
    if (ivar.eq.iu(1)) then
     k_value
               = - AD_position(nbelm)%dFX
      crvimp(iel) = min(0.0, (- 2.0 * k_value * dsin(azim_ang) * u_theta) )
1
     crvimp(iel) = - 2.0 * k_value * dsin(azim_ang) * u_theta
     crvexp(iel) = - k_value * ( W_rel2 - (2.0 * dsin(azim_ang) * u_theta * ux) )
    !-----Sy source term ------
    else if (ivar.eq.iv(1)) then
     k_value
              = - AD_position(nbelm)%dFY
!
      crvimp(iel) = min(0.0, (2.0 * k_value * dcos(azim_ang) * u_theta))
     crvimp(iel) = 2.0 * k_value * dcos(azim_ang) * u_theta
crvexp(iel) = - k_value * ( W_rel2 + (2.0 * dcos(azim_ang) * u_theta * uy) )
    !-----Sz source term ------
    else if (ivar.eq.iw(1)) then
             = - AD_position(nbelm)%dFZ
     k_value
      crvimp(iel) = min(0.0, (- 2.0 * k_value * uz) )
I.
     crvimp(iel) = - 2.0 * k_value * uz
     crvexp(iel) = k_value * ( (uz * uz) - (u_theta * u_theta) )
    endif
 enddo
! -----
! end of loop for momentum source terms consists of Sx, Sy and Sz
! -----
!if (ntcabs > 137) then
!print*,'step8'
!endif
 1-----
 ! deallocate dynamic arrays associated with the 2D blade design data base
 ! the Actuator Disc elements
 !-----
 if ((ncall == 3).and.( ntcabs >= ntmabs)) then
           do n = 1, n_be
             current => blade_position(n)%ptr_bsection
              do while ( associated( current ) )
               previous => current
```

```
current => current%next
               deallocate( previous )
             end do
           enddo ! loop of n_be
           deallocate(blade_position)
           do n = 1, nMax_elms_stop(Nfarmax)
            current => AD_position(n)%ptr_Belement1
             do while ( associated( current ) )
               previous => current
               current => current%next
               deallocate( previous )
             end do
           enddo
           do n = 1, nMax_elms_stop(Nfarmax)
            current => AD_position(n)%ptr_Belement2
             do while ( associated( current ) )
               previous => current
               current => current%next
               deallocate( previous )
             end do
           enddo
           deallocate(AD_position)
          1 ------
          ! Close files at final time step
                _____
          ! -----
          !if (irangp.le.0) then
          do ii = 1, 1
           close(impout(ii))
          enddo
          !endif
          ! -----
                -----
          ! Close files at final time step
          ! -----
 endif
 !-----
1-----
! Formats
1-----
1000 format(' User source termes for variable ',A8,/)
!----
! End
!----
if (ncall == 3) then
  print*,' time step = ',ntcabs
  ncall = 0
endif
```

```
D. USTSNS.F90
```

```
return
contains
         subroutine find_cl_cd(alpha,Nrec,ptr_bsect,cl,cd,icheck)
          use turbine_design
          implicit none
          integer
                       irec,Nrec,n
          double precision cl,cd,cl1,cl2,cd1,cd2,alpha,alpha1,alpha2, interp1, interp
          double precision, parameter :: v_small = 1.0d-6
          double precision, parameter :: alfmin = -3.14
          double precision, parameter :: cd_max = 1.07
          type (b_section), pointer :: ptr_bsect
          logical icheck
            icheck = .true.
            n = Nrec - 1
            if (alpha > alfmin) then
             do irec = 1,n
              alpha1 = ptr_bsect%alpha
              if (alpha1 == -999) call error_message("error1 with find_cl_cd")
              cl1
                     = ptr_bsect%cl
              cd1
                     = ptr_bsect%cd
              ptr_bsect => ptr_bsect%next
              alpha2 = ptr_bsect%alpha
              if (alpha2 == -999) call error_message("error2 with find_cl_cd")
              c12
                     = ptr_bsect%cl
              cd2
                     = ptr_bsect%cd
              if ((alpha >= alpha1).and.(alpha <= alpha2)) then
                icheck = .false.
                exit
              endif
             enddo
             interp1 = (alpha2 -alpha1)
             if (dabs(interp1) < v_small)then</pre>
               call error_message("error4 with find_cl_cd")
             endif
             interp = (alpha -alpha1)/interp1
             cl = cl1 + interp * (cl2 - cl1)
             cd = cd1 + interp * (cd2 - cd1)
             if (cd > cd_max) cd = cd_max
            else
              alpha1 = ptr_bsect%alpha
              if (alpha1 == -999) call error_message("error1 with find_cl_cd")
              cl1
                     = ptr_bsect%cl
              cd2
                     = ptr_bsect%cd
              ptr_bsect => ptr_bsect%next
              alpha2 = ptr_bsect%alpha
              if (alpha1 == -999) call error_message("error2 with find_cl_cd")
                     = ptr_bsect%cl
              c12
                     = ptr_bsect%cd
              cd1
              interp1 = (alpha2 -alpha1)
              if (dabs(interp1) < v_small)then</pre>
               call error_message("error4 with find_cl_cd")
```

```
endif
interp = (alpha -alpha1)/interp1
cl = cl1 + interp *(cl2 -cl1)
cd = 0.5 * (cd2 + cd1)
endif
return
end subroutine find_cl_cd
end subroutine ustsns
```

Bibliography

- Bryden, I., Couch, S., Owen, A., and Melville, G. (2007). Tidal current resource assessment. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221(2):125–154.
- Childs, H., Brugger, E., Bonnell, K., Meredith, J., Miller, M., Whitlock, B., and Max, N. (2005). A contract-based system for large data visualization. In *Proceedings of IEEE Visualization*, pages 190–198.
- Crawley, M. (2007). The R Book. John Wiley & Sons, Chichester, England.
- EDF (2012). Code_Saturne version 2.0.6 practical user's guide. Technical report, Fluid Dynamics, Power Generation and Environment Department, EDF R&D, 6, Quai Watier, F-78401 Chatou CEDEX.
- Foley, J. and Van Dam, A. (1982). Fundamentals of interactive computer graphics. Addison-Wesley, Reading, Mass.
- Halse, M., Curtis, C., and McCormick, L. (1991). IRIS Explorer Users Guide. Silicon Graphics Inc, Mountain View, California.
- Hansen, M. (2001). Aerodynamics of Wind Turbines : Rotors, Loads and Structure. James and James (Science Publishers) Ltd.
- Harrison, M., Batten, W., Myers, L., and Bahaj, A. (2010). Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. *IET Renewable Power Generation*, 4(6):613–627.
- Horlock, J. (1978). Actuator disk theory Discontinuities in thermo-fluid dynamics. McGraw-Hill International Book Co., New York.
- Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3):299–314.
- Ingram, D., Gao, F., Causon, D., Mingham, C., and Troch, P. (2005). Numerical wave flume simulations of seawall overtopping. In Smith, J., editor, *Coastal Engineering* 2004, volume 4, pages 4560–4572. World Scientific, Singapore.
- Joy, K., Miller, M., Childs, H., Bethel, E., Clyne, J., Ostrouchov, G., and Ahern, S. (2007). Frameworks for visualization at the extreme scale. *Journal of Physics: Conference Series*, 78:012035.

Bibliography

- Larkin, S. (1992). Evaluation of visualisation systems. Technical report, Advisory Group on Computer Graphics (AGOCG). Available from Dr A Mumford, Computer Centre, Loughborough University of Technology.
- Mikkelsen, R. (2003). Actuator Disc Methods Applied to Wind Turbines. PhD thesis, Technical University of Denmark, ISBN 87-7475-296-0.
- Moulinec, C., Denis, C., Pham, C.-T., Rougé, D., Hervouet, J.-M., Razafindrakoto, E., Barber, R., Emerson, D., and Gu, X.-J. (2011). TELEMAC: An efficient hydrodynamics suite for massively parallel architectures. *Computers and Fluids*, 15(1):30–34.
- Nguyen, Q. (2011). k-omega sst is not applicable for roughness study in saturne.
- Prandtl, L. and Betz, A. (1927). Vier abhandlungen zur hydrodynamik und aerodynamic. Technical report, Göttingen.
- Richardson, S., Ingram, D., Mingham, C., and Causon, D. (2002). On the validity of the shallow water equations for violent wave overtopping. In Edge, B., editor, Ocean Wave Measurement and Analysis, pages 1112–1125. ASCE, Reston, Virginia.
- Richardson, S., Pullen, T., and Clarke, S. (2003). Jet velocities of overtopping waves on sloping structures: Measurement and computation. In Smith, J., editor, *Proceedings of* the 29th International Congress on Coastal Engineering, volume 2, pages 2239–2250, New Jersey. ASCE, Reston, Virginia, World Scientific.