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1. Executive summary

The aim of this deliverable is to demonstrate the functionality of an actuator disc model of a tidal
turbine, which is performing under Basin Scale conditions with mesoscale tidal flows. The work
therefore falls within the category of “turbine modelled/farm resolved” three-dimensional unsteady
Reynolds Averaged Navier-stokes (URANS) simulations. By averaging the results from these tests,
the output can be used in the creation of shallow water equations, representing models of turbines,
which are incorporated into basin scale models in WG2 WP3. By employing a uRANS approach,
the calculation time can be much faster than if a blade-resolved approach was taken. Ultimately, in
environments with significant anisotropic turbulence, a Large Eddy Simulation (LES) would be
employed instead [1]. For the purpose of this deliverable, avoiding otherwise extremely large
computational costs associated with LES, a more isotropic tidal flow environment has been
considered justifying the application of the cheaper uRANS approach involving a k-¢ turbulence
model. As a result, the Sound of Islay tidal environment has been chosen as a suitable test bed for a
tidal array for this investigation [2].

In this report, the development, testing and validation of a mesoscale, three-dimensional tidal
channel model, with the addition of an Actuator Disc model, is detailed. The modelling work uses
the computational fluid dynamics software Code Saturne, with unsteady Reynolds-averaged
Navier-Stokes equations resolving the turbulent tidal flow, including the interactions with the tidal
farm, which is represented as a set of Actuator Discs on the local flow.

Figure 1: Different scales of turbine interaction associated with PerAWaT WG3 work group.

Earlier findings within deliverable WG3 WP2 D4 have been utilized to set up appropriate time-
averaged downstream flow conditions to ensure characteristics of velocity, turbulent kinetic energy
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and turbulent dissipation profiles, which persist correctly at the point of flow coming into the
turbines within the flow field.

The acceptance criteria for D5b are:
1) Code Saturne input and output files for the simulations described in this report.

These are on the accompanying CD; a README file in the root directory of the CD
describes the contents in full.

2) That the report describes the following, for unsteady turbulent flow conditions:

a) The required modifications to previous Steady Tidal Array modelling, described in
deliverable WG3-WP2-D5a at farm scale, to incorporate the tidal site characteristics
of the suggested tidal site given with deliverable WG3-WP2-D4.

b) Statistical methods employed to provide a modification to the earlier steady state
parameterization of the wake. This is implicit in the reporting of section 4.

Page 3 of 77



PerAWaT WG3 WP2 D5b

2. Previous Steady Array model studies at farm scale

The previous work, which was covered in deliverable WG3 WP2 D5a, gave an extensive
assessment of tidal turbine modelling using an Actuator Disc model involving steady RANS. In
D5a tests on a small array of turbines were performed, but to limit the computational costs of these
simulations. symmetry conditions were used to minimise the size of the domain. These simulations
were based on cases considered by the University of Manchester (in particular tests 19 and 20), both
of which use two rows of turbines. It was agreed at the tidal sub-project meeting in September
(document reference CR-P74/2012/) and at the 12" PerAWAT project steering committee meeting
on the 13th September 2012 (Document No. 104325/BT/19), that Manchester test 13, which
comprises a single row of three turbines, would be studied. To provide an additional validation case
for the Blade Element Momentum Theory Actuator Disk (BEMT-AD) model, Manchester test 13
would be simulated under steady flume conditions, similar to those considered in D5a for Tests 19
and 20. This allows comparisons to be made with the available experimental data from the
University of Manchester.

The meshing strategy employed 1s similar to that used in the staggered case in D5a. Each individual
turbine 1s meshed using cylindrical O-grid to discretise its rotor plane. Following the approach used
in D5a, only the nacelles have been included in the computation and there are no support structures.
In meshing the nacelle an H-grid region has been used at the centre of the O-grid. In the present
case, the full width of the array has been simulated and there is no central symmetry plane.

21 Computational set up

Figure 2 Detail from the ICEM mesh generator showing the cross-sectional grid (blue), the solid volumes for the nacelle
(green) and the refined mesh region in the neighbourhood of the upstream actuator disc

Page 4 of 77



PerAWaT WG3 WP2 D5b

As shown in Figure 2, the meshing strategy involves the ICEM package for a single array of three
turbines. As can be seen, three cylindrical O-grids extend the length of the computational domain,
with the rotor planes discretised appropriately. The O-grids in each case have 15 cells in the radial
direction and 24 cells in the circumferential direction. Mesh stretching has been used to refine the
grid at the edge of the rotor, so that the shear between the free stream flow and the fluid, which has
passed through the actuator disk, is sufficiently resolved. Following the same strategy as was
employed in the simulations of Manchester tests 19 and 20 (see WG3 WP2 D5a), a 6x6 H grid is
used to model the nacelle. It should be noted that the nacelle does not form part of the BEMT-AD.

The blade geometry used in these tests is shown in Table 1. The required tables for coefficients of
lift, C;, and drag, Cp, against angle of attack, o, for the Goe804 airfoil were obtained from the
University of Manchester and can be found in the file Goe804.txt. The lift and drag coefficients for
the airfoil are plotted in Figure 3. The code given in usinv.£90, ustsns. f90 was modified to
create three actuator discs, located on the faces of the upstream rotors. The source code for the user
routines, together with the run files blade.txt, circle.txt and Geo804.txt are included on the
accompanying CD in the Double directory.

Table 1: Blade geometry for the three bladed horizontal axis turbines tested in the University of
Manchester test13 array test.

Radial Twist Chord Thickness Section

ordinate angle length t/c
0.001 38.4 0.015 100% Circle
0.015 38.4 0.015 100% Circle
0.033 22.9 0.0200 4% Goe804
0.045 16.0 0.0300 4% Goe804
0.059 11.3 0.0275 4% Goe804
0.073 9.0 0.0250 4% Goe804
0.085 7.5 0.0223 4% Goe804
0.099 5.8 0.0195 4% Goe804
0.113 4.1 0.0175 4% Goe804
0.125 3.1 0.0155 4% Goe804
0.135 2.6 0.0130 4% Goe804
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Figure 3 Coefficients of aerodynamic lift, C;, and drag, Cp, for Goe804 aerofoil

The results from these simulations are presented in section 4.1.

3. Unsteady flow Array modelling at farm scale

To demonstrate the use of the BEMT-AD model in farm scale CFD models, a simulation of a two
row, staggered array in the a tidal channel has been performed. The tidal channel used is that
presented in WG3 WP2 D4 and is based on the Sound of Islay; A tidal straight between the islands
of Islay and Jura in Scotland. The Sound of Islay has been selected by Scottish Power Renewables
(UK)) Ltd for a 10MW array demonstration site [2]. Following the approach followed in WG3 WP2
D4, the sound has been modelled as a rectangular domain Skm long and 1km wide.

Figure 4 Sound of Islay 10MW tidal demonstration project, reproduced from [2].
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Figure 5 Isle of Islay flow field design for unsteady staggered array modelling at farm scale

Figure 6 Mesh design variation normal to the flow direction at different cut points in the flow field
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3.1 Computational set up

Figure 5 and Figure 6 indicate the necessary flow field design for unsteady modelling at farm scale.
In accordance with the design described in WG3 WP2 D4 [3], The aspect ratio (length:height) of
each cell was kept as near as possible to 3.2. High aspect ratio cells are critical for accurate and
stable boundary layer development. Modelling the rotor planes (Figure 6) requires the aspect ratio
of the cells in the neighbourhood of the turbines to be less than 3.2.An initial meshing strategy
based on extruding the turbine mesh downstream proved unstable. Further computational
experiments have shown that the CFD model will not break down, as long as the following criteria
are met:

* The recommendations for boundary and flow conditions and general Code Saturne settings,
outlined in Creech[3] from WG3 WP2 D4, are kept, with hub height at 25m.

* The placement of the first array of turbines should be 2km downstream of the inlet
boundary, to allow the flow conditions to settle to a steady state and to provide the correct
shear flow profile, representing a working environment for the staggered tidal array farm.
(The y plane cutting the first array of turbines gives an upper middle region where 0.4 <
V/max < 0.8, which has flow speeds with a maximum deviation of 4% as stipulated by
Creech[3]).

This approach allows a sufficiently accurate representation of the rotor plane for the BEMT-AD
model and provides a stable CFD simulation of the tidal channel. It is also important to note that, in
these simulations, the nacelle and support structure of the turbine are not represented. As such,
these simulations are categorised as turbine modelled/farm resolved simulations (Figure 1).

Details of the implementation of the BEMT-AD model are presented in WG3 WP2 D5a chapter 2,
together with a description of the input files required to set-up the BEMT-AD model. The
Code_Saturne user Fortran routines used for this case can be found in Appendices B, C and D. For
the present case, the blade design for the rotors follows the generic TGL design used as the basis for
the EDF single-rotor flume tests (WG4 WP1) and the blade-resolved CFD simulations performed
for WG3 WPS5 D1. The operating conditions are for a design tip speed ratio of 4.5, when steady
flow conditions have been met after several time steps. Gretton has covered the TGL design in
considerable detail in deliverable WG3 WPS D1 [4]. The blade.txt file and cl/cd graphs files given
in the CD are based on the work reported in WG3 WP5 D1. The sections are used in TGL blade
designs are based on the NACA six series airfoils 633-418 to 633-455. The 6-series airfoils are
designed to maximise laminar flow compared with the equivalent NACA 1-series airfoil. The 6-
series family of airfoils is described using six digits in the following sequence:

1. The number "6" indicating the series.

2. One digit describing the distance of the minimum pressure area in tens of percent of chord.

3. The subscript digit gives the range of lift coefficient in tenths above and below the design
lift coefficient in which favourable pressure gradients exist on both surfaces

4. A hyphen.

5. One digit describing the design lift coefficient in tenths.

6. Two digits describing the maximum thickness in tens of percent of chord.

The TGL blades are thus designed to have at a minimum pressure at 30% of the chord, a design lift
coefficient of 0.4 and a thickness of between 18% and 55%.
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4. Results

4.1.Single row of turbines at farm scale under steady state conditions

In this Code Saturne simulation, as with all three of the Manchester comparison experiments, a
rough-wall model has been used together with the -¢ turbulence model to model the Manchester
experimental basin (see WG3 WP2 D5a). It should be noted, however, that the Manchester
experimental tests were not designed for direct comparison with CFD simulations and, as a result,
the boundary layer at the bottom of the basin is less well characterised than would normally be
expected for CFD/Experimental comparisons. In figure 7, the basic flow field approximations are
shown.

Figure 7 of a working turbine Flow field approximation

The nacelle can be seen as a blue object against a system of curves representing the flow field, with
two closely positioned circles representing the swept volumes generated by a multi-bladed rotating
turbine. The BEMT-AD model will introduce source/sink terms to represent the velocity changes
and energy losses associated with the rotor’s blades averaged over one complete rotation of the
turbine. The test conditions for each turbine rig were as described by Stallard and Collins [5], on
pages 10, 13 and 14. The rotor plane used in the computational simulation is slightly thicker than
the width of the blades. This approximation is needed to comply with the meshing criteria advised
for Code Saturne users [6] to ensure numerical stability. The presence of the nacelle in these tests
makes the task of mesh creation for the flow field with ICEM more complex, as a smooth, well
discretised, mesh is required on the nacelle surface and in the base region. Failure to mesh this with
sufficient fidelity leads to poor predictions of the base flow behind the nacelle and poor resolution
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of the boundary layer around nacelle. Conversely, high resolution meshing of the nacelle leads to
an unacceptably large mesh and very high computational costs.

The results for axial velocity Ux and Turbulence Intensity distributions along the geometric axis of
symmetry of each turbine are shown in Figures 8 and 9, which show good agreement with
experiment by six turbine diameters downstream. However, the near wake has a poorer agreement,

due to the departure of the modelled nacelle geometry from that previously used in flume tests
conducted at the University of Manchester.

Figure 8 Distribution of Turbulence Intensity along the axis of system of each turbine for test 13

Figure 9 Distribution of axial velocity along the axis of symmetry of each turbine for test 13
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The far wake agrees with the BEMT-AD model because the turbine rotor is the principal source of
momentum extraction. Flow over bluff bodies (ie the nacelle and support structure) in the near wake
create large eddies, leading to a significant, local, momentum deficit. Most of this loss of
momentum is recovered, though mixing, by the time the far wake is reached. Accurate modelling
of flow in the near wake region requires both high resolution meshing of the nacelle and support
structures, and a blade resolved CFD model. The agreement between the BEMT-AD model and the
experimental measurements in the fare wake zone is, therefore, as expected. Should higher fidelity
modelling be needed of the near wake region either a BEMT Actuator Line model or a fully blade
resolved computation is required (See WG3 WP2 D5a). This hypothesis is supported by Figures 10
to 27, which show how momentum is removed and, to some extent returned, with the exception of
that taken by the turbine.

Figure 10 Ux distribution across the y plane at four diameters downstream of the turbine farm

Figure 11 Ux distribution across the y plane at four diameters downstream of the turbine farm
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The increasing thickness of the boundary layer in the region -1.0 < z/D < -0.8 (Figures 22 to 27)
causes the CFD curve of the Ux distribution to “tail back. It can be noticed from these figures that
the growth of the CFD boundary layer is significantly more pronounced than that seen in the
experimental data. This difference is a direct result of not being able to correctly specify the
boundary layer profile in region -1.0 < z/D < -0.8, a difficulty that arises because of the limited
number of experimental data points in this region'. This difference causes the flow between the
free surface at z/D=1 and flume floor at z/D=-1 to be more blocked, explaining why the CFD
velocity curves are displaced to the right, as seen in Figures 12 to 15 and 24 to 27.

Figure 12 Ux distribution across the y plane at six diameters downstream of the turbine farm

! Recent communication with Stallard [7] over the nature of the original contract indicates that it was originally
specified that no use would be made of UoM experimental data for CFD comparison. As such, the near bed profile was
not specified for these experiments and the need for this data in PerAWaT has only arisen due to contract changes,
which failed to take this issue into account!
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Figure 13 Ux distribution across the y plane at eight diameters downstream of the turbine farm

Figure 8 and figures 16 to 21 indicate significant differences in turbulence intensity distributions for
the experimental data and the CFD predictions in the near wake. The simplified arrangement of the
actuator disc, with a disc of thickness 0.01 times the turbine diameter, makes no provision for the
actual rotor blade generated turbulence during one rotational sweep of the rotor. The RANS BEMT-
AD model should have turbulence added artificially to compensate for this effect (This issue will be
addressed in D6). Also, as previously described, the approximations to the nacelle geometry and
lack of support structure have an influence on the local wake area flow features.

To complete the analysis of Manchester test 13 results, the loss of momentum from the wake can be
accounted for by considering a more global verification of the effect. The use of parameters, namely
the thrust and power coefficients, CT and CP respectively, for each turbine, has been investigated at
different tip speed ratios, based on the upstream conditions of undisturbed velocity U. = 0.45m/s, at
a hub height of H = 0.225m, for their inflow weir conditions. Figure 28 indicates the extremely
close agreement between theory and experiment for test 13. The influence of each of the three
turbines on each other, causing the CT to be elevated beyond that normally experienced by a single
turbine alone, is clear.
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Figure 14 Ux distribution across the y plane at ten diameters downstream of the turbine farm

Figure 15 Ux distribution across the y plane at 12 turbine diameters downstream of the turbine farm
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Figure 16 Turbulence intensity distribution across the y plane at two diameters downstream of the turbine farm

Figure 17 Turbulence intensity distribution across the y plane at four diameters downstream of the turbine farm
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Figure 18 Turbulence intensity distribution across the y plane at six diameters downstream of the turbine farm

Figure 19 Turbulence intensity distribution across the y plane at eight diameters downstream of the turbine
farm
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Figure 20 Turbulence intensity distribution across the y plane at ten diameters downstream of the turbine farm

Figure 21 Turbulence intensity distribution across the y plane at twelve diameters downstream of the turbine
farm
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Figure 22 Averaged Ux distribution across the z cut plane at two diameters downstream of the turbine farm

Figure 23 Averaged Ux distribution across the z cut plane at four diameters downstream of the turbine farm
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Figure 24 Averaged Ux distribution across the z cut plane at six diameters downstream of the turbine farm

Figure 25 Averaged Ux distribution across the z cut plane at eight diameters downstream of the turbine farm
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Figure 26 Averaged Ux distribution across the z cut plane at ten diameters downstream of the turbine farm

Figure 27 Averaged Ux distribution across the z cut plane at twelve diameters downstream of the turbine farm
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Figure 28 Comparison of experimental results and predicted thrust coefficient CT from each of the three
turbines involved in test 13

4.2. Staggered array of turbines working under unsteady conditions representing
the Sound of Islay

The results given in figures 29 to 33 give a time average results from the staggered farm simulation
for the Sound of Islay (Section 3). In the present simulations, the turbine rotors have a constant
rotational speed, equivalent to a TSR of 4.5. In a more realistic simulation (the subject of WG3
WP2 D7/D8) the speed of the rotor would be governed by the power extracted from the flow and
the shaft torque, thus providing a more complete model of the power train.

General Code Saturne settings

This section details the general settings used within all the Code Saturne simulations, and explains
the reasoning behind them. This should facilitate easy recreation of tidal channel simulations, even
without the original XML files. Unless otherwise indicated, these settings are what the Code
Saturne User Guide calls L1 (level 1) options: i.e. options that can be changed through the Code
Saturne GUI. The Code Saturne option key is in brackets, which can be found in section 9 of the
user guide if more details are required.

Table 1. List of physical parameters.

Name Keyword | Value Explanation
Density IROVAR 1020 Kg/m’ Density of seawater at 20°C near surface.
Dynamic viscosity IVIVAR 0.001 Na.s Dynamic viscosity at 20°C.
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Table 2. Numerical parameters used within Code Saturne in every simulation.

runcase qsub
script)

Name Keyword | Value Explanation
Flow algorithm IDTVAR Unsteady RANS unsteady state numerically stable; also D5b
will use unsteady RANS, so more appropriate
choice.
Turbulence model ITURB k-epsilon k-o turbulence modelling buggy in Code Saturne
with rough walls: see WG3 WP2 D5a and WG3
WP2 D4 for further explanation.
Initial velocity - 0 m/s No initial profile assumed; allow channel velocity
profile to develop through bottom drag.
Initial turbulence - k=6.0x10" m?/s’ | A small degree of initial turbulence was found to
e=1.6x10" m%s* | increase numerical stability: no effect on eventual
levels of turbulence.
Unsteady flow - Variable in time | Default values used for Max. CFL no., Max.
algorithm management and uniform in Fourier no, etc. except NTMABS (see below).
space
Number of iterations NTMABS 10000 Sufficient number of iterations for flow to fully
develop and become statistically stable.
Equation parameters/ ISCHCV SOLU Second-order upwind scheme found experimentally
scheme (VelocityX, to give greater numerical stability.
VelocityY, ... Dissip)
Gradient calculation IMRGRA Least sq. Improves numerical stability with strong vertical
method method over velocity gradients for slight increase in CPU usage.
extended cell
neighbourhood
Output Control/Post- NTCHR Post-processing | Gives sufficient time-stepped field data towards end
processing every 10 time of simulations to allow averages to be calculated.
steps Total disc usage found to be ~30Gb
(For every 1 time steps, this increases to 300Gb)
Number of parallel (see SCRIPTS/ | 120 Number of cores to run simulations under MPI.
cores runcase qsub Simulations take approximately 24 hours.
script)
Memory per core (see SCRIPTS/ | 4Gb Minimum amount of memory available per core,

setting the 4Gb limit ensures none of the allocated
cores will have 2Gb of ram so the Code Saturne
pre-processor can run without a memory fault.

Bed roughness

We assume that our channel model has a bottom roughness, which represents the effect of friction
caused by an uneven, rocky layer on the seabed. This can be set within Code Saturne as part of a
rough wall boundary condition, with the roughness prescribed as a roughness height, Z,. In the
present simulations, a bed roughness length of Zy=0.2m has been used (WG3 WP2 D4 presents a

justification for the selection of this roughness length).

Velocity profile and inlet turbulence

The velocity profile is set at the inlet as a Dirichlet condition. This takes the form of a standard
logarithmic profile for turbulent flow, ie.

K

@ u(z) = ﬁln(—
20

|

Where u(z) is the x-component of the water velocity at height z above the seabed, k is the Von

Karman constant (= 0.41), and u_ is the friction velocity. The y and z components of velocity are

Z€10.
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It should be noted that we are neglecting the viscous sub-layer here, as we expect the flow to
properly develop downstream in the CFD simulation, and so the boundary velocity profile must
only qualitatively represent the flow overall. As a result, where z <z, weset u =0.

To calculate u,_, as we already know z,, we must specify u at a known height at the boundary. A
sensible choice would be at the presumed hub-height, z,,, of the tidal turbines to be modelled. If we
say u, = u(z =z, ), then we can write the frictional velocity as

-1
Inl 222
2y
In the present simulations, z,, =40m. This has been selected for consistency with D4. The velocity
log profile is set via the usclim. £90 routine in Code Saturne.

Q) U =u,K

Within the Code Saturne GUI, the turbulence at the inlet can be specified by two parameters: the
turbulent intensity (TI), and the hydraulic diameter (D, ). There are several definitions of the

hydraulic diameter, D,, ; we shall use the most common definition, ie.
A
3) D, = 7’

where A is the cross-sectional area of the channel, and P is the wetted perimeter. As
P = widthxdepth, this gives us a hydraulic parameter of D, =24 m. The turbulence intensity (at

the inlet) for these simulations has been selected as 15%, again for consistency with D4 (which
provides a justification).

Initial conditions

The initial velocity in the channel is set to 0 ms™'. The use of a quiescent initial condition allows the
flow around the turbines to develop slowly and prevents the stability issues, which would be
encountered by using a “big splash” initial condition where the initial flow field would have a
constant uniform velocity. The disadvantage of this approach is that the incoming tide must be
allowed to wash through the domain, and the initial transients allowed to propagate out of the
domain before post processing can be done. Figures 29 to 31 show the developing velocity profile
through the channel after 1, 200 and 400 time steps. The propagation of the velocity front can be
clearly be seen.

Post processing

Once sufficient time steps have been performed for a quasi-steady solution to be obtained (circa
1400), the results can be post processed. In order to remove small scale fluctuations in the plots, the
presented quantities are averaged over the last 200 iterations of the simulation. This provides plots
of mean flow quantities in the same way as the results presented in D4. Additional post processing
can also be performed to present other statistical quantities associated with the flow such as
variance.
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Figure 29 uH =1 first time step

Figure 30 uH =1 time step 200
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Figure 31 uH =1 time step 400

Figure 32 shows a psudo-colour plot of the velocity distribution through the centre line of the
turbines for the low flow condition of uH=1.0ms™. The acceleration of the flow passing the array
and the wakes of the first and second row of turbines can clearly be seen. The maximum velocity
deficit is 25% and this occurs in the near wake region. It should be noted that the actual incident
velocity at the hub height is 0.95ms™. This is slightly lower than the uH as the actual hub height is
at 25m, whereas the reference height used for the boundary condition is at 40m. This reduction is
realistic, since the flow velocities tabulated in tidal streaming atlases (and computed at tidal
diamonds) are measured in the surface layer of the water column, whereas the turbine hub will be
located in the top of the turbulent boundary layer.

Figure 32 Y plane cut through flow field showing flow topography of the seven staggered turbines for uH=1m/s
at 1436 time steps
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Figure 33 Y plane cut through flow field showing flow topography of the seven staggered turbines for uH=4m/s
at 1436 time steps

Figure 33 shows a pseudo-colour plot of the velocity distribution through the centre line of the
turbines for the high flow condition of uH=4.0ms™. The acceleration of the flow passing the array
and the wakes of the first and second row of turbines can clearly be seen. The maximum velocity
deficit in this case is 24% and this, again, occurs in the near wake region. As before, the incident
velocity at the hub is slightly lower than the uf as the actual hub height is at 25m, whereas the
reference height used for the boundary condition is at 40m. It is interesting to note that a small
increase in the mean flow at the edges of the straight downstream of the turbine array can also be
seen, indicating that e blockage is starting to have an effect.

Figure 34 Axial normalised velocity distributions through the centrelines of the seven turbines for uH=4.0m/s.
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Figure 34 shows the axial normalised velocity distributions through the centrelines of the seven
turbines. Turbines 1, 2 and 3 are located in the upstream row of the array, while turbines 4 to 7 are
located in the downstream row. The velocity deficit curves for turbines 1 and 3 (on the outside of
the array) show a more pronounced deficit than turbine 2 immediately prior to the second row of
turbines. As their wakes pass the 2™ row a slight acceleration of the flow can be seen, before the
red (turbine 1) and yellow (turbine 3) curves merge with the distribution of turbine 2 (magenta).
For the downstream row, the outer turbines (4 — cyan and 7 — cyan with crosses) show less velocity
deficit than the two central turbines (5 — purple and 6 — brown). These differences persist far down
stream of the array and are still evident 100 turbine diameters downstream, when the wakes have
mixed almost completely. It is interesting to note that there is still a significant velocity deficit 120
diameters down stream at the downstream boundary of the domain.

Figure 35 Normalised cross-stream velocity distributions at hub height for 2, 4, 6, 8, 10 and 107 diameters
downstream of the array for uH=4.0ms

Figure 35 shows the normalised velocity distributions across the width of the straight, at between 2
and 107 diameters downstream of the second row of turbines. The plot shows the difference in the
velocity deficit between individual turbines in the near wake and that by six diameters downstream
these have mixed to provide an almost uniform parabolic wake. By 107 diameters down stream of
the array the array wake is still present with an approximately 5% maximum velocity deficit and a
more classical Gaussian shape.

Figure 36 shows the vertical normalised velocity distribution on the centre line of the straight, down
stream of the array. At 2 and 4 diameters down stream the velocity deficit due to the turbines is
clearly visible, as is the acceleration of the flow passing beneath the array — this leads to a
characteristic s-shaped velocity profile. By 12 diameters, the tidal boundary layer is being re-
established and this acceleration region is no longer observed. By 107 diameters downstream, a
classical power law boundary layer is observed, though the maximum normalised velocity is only
about 95% of the free stream velocity.
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Figure 36 Vertical profile of normalised velocity, on the centre line of the channel, downstream of a staggered
array of tidal turbines in a tidal straight at uH=4.0ms™

In performance of the turbines, Figure 37 shows the convergence history of the dimensionless thrust
coefficient (Cr) for each of the seven turbines in the array. It can be seen that the upstream row of
turbines operates at an effective Cr of 0.65, while there is a reduction in the thrust developed by the
outer and inner turbines in the second row. The overall Cr and power (Cp) performance of the
turbines at varying tip speed ratios is shown in Figure 38. This shows that the front row of the
turbines is performing as expected.

Figure 37 Dimensionless thrust coefficient for each of the turbines, plotted against iteration number for a
staggered array of seven turbines operating at a TSR of 4.5 in a tidal channel with uH=4.0ms™
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Figure 38 Thurst and Power coeficients as a function of tip speed ratio for the TGL style turbine rotor, showing
BEMT-AD predictions, BEM predictions and blade resolved preditions.

5. Conclusions and further work

The work covered in this technical report has investigated the final aspects of D5a, which has been
more extensively covered, to explain the minor differences seen in the wake between the theoretical
analysis and the experimental results from the University of Manchester. This has used test case 13
to provide a less ambiguous test, compared to the other test cases given in D5a. The results
provided in figure 28 are particularly encouraging, since agreement is extremely close.

The main test work of this deliverable has been displayed as a series of flow topologies, providing
evidence of the applicability of the D5b model. The wake development is similar to that given for
the staggered case. It has also displayed that the code and the Actuator Disc models are numerically
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stable for the unsteady flow array case and that the code is easily parallelized on distributed super-
computers using MPI. In the present cases the code has been run on the EDDIE cluster at the
University of Edinburgh over 120 cores, using a high speed myranet interconnect, leading to a
speed up factor of more than 10 compared to a single processor. The implementation of the BEMT-
AD model has been modified over that presented in D5a to allow a parallel implementation.

In terms of future deliverables two are of note: D3, which involving the full development of a free
surface model will be integrated into to array model to examine deformation to the free surface
passing the array (in D7), and D6 which will extend the wake parameterisation models from WG3
WP2 D5 for arrays of turbines. It should also be noted that demonstrating (in this deliverable) that
the BEMT-AD model runs in parallel will allow very large scale simulations (such as those
foreseen in WG3 WP2 D7 and D8) to be run utilising up to 1000 cores.
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Appendix A

Contents of the accompanying CD
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Appendix B

usinv.f90

! This file is part of the Code Saturne Kernel, element of the

! Code_Saturne CFD tool.
! Copyright (C) 1998-2008 EDF S.A., France
! contact: saturne-support@edf.fr

! The Code_Saturne Kernel is free software; you can redistribute it
! and/or modify it under the terms of the GNU General Public License
! as published by the Free Software Foundation; either version 2 of

! the License, or (at your option) any later version.

! The Code_ Saturne Kernel is distributed in the hope that it will be
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty
! of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

! GNU General Public License for more details.

! You should have received a copy of the GNU General Public License
! along with the Code Saturne Kernel; if not, write to the

! Free Software Foundation, Inc.,

! 51 Franklin St, Fifth Floor,

! Boston, MA 02110-1301 USA

Module connectivity
Integer (8) :: nbcell (1000000,6)
Integer (8) con (1000000, 6)
double precision clcd val(1000)

contains
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subroutine error message (text)

character (*) :: text

'if (irangp.le.0) then
print*, text

lendif
stop

end subroutine error message

End Module connectivity

Module turbine design

integer n_be

Integer

Integer

double precision

double precision

double precision

type :: b _section
double precision
double precision
double precision
type (b_section), pointer

end type b_section

type :: blade element
double precision
double precision
double precision
integer
character (30) ,pointer
type (b_section), pointer

end type blade element

type :: AD element
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision

double precision

nMax elms_start (8)
nMax elms_stop(8)
rotor_radius
blade_scale

Frontal Area(8)

alpha
cl
cd

next

rad

theta
chord
rec_count
Bsection

ptr bsection

rad
chord
twist
elm area
azim deg
dFXx

dry

dFZzZ

frac v
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integer
integer

integer

type (b_section), pointer

type (b_section), pointer

end type AD _element

type (AD_element),

type (blade_element),

End Module turbine design

subroutine usiniv &

( idbial

ndim
nnod
nvar
nideve
ifacel
ipnfac
idevel
xyzcen
dt

rdevel

’

’

, 1dbral
ncelet ,
1ndfac ,
nscal ,
nrdeve ,
ifabor ,
nodfac ,
ituser ,
surfac ,
rtp ,

rtuser ,

use turbine_ design

use connectivity

|

ncel
Indfbr
nphas
nituse
ifmfbr
ipnfbr
ia
surfbo
propce

ra

’

allocatable
allocatable
nfac , nfabor
ncelbr ,
nrtuse ,
ifmcel , iprfml
nodfbr ,
cdgfac , cdgfbo
propfa , propfb

nCel ! Code Saturne cell number

Nrecl
Nrec?2
ptr_Belementl

ptr_Belement?2

AD position(:)

blade position(:)

, nfml , nprfml

, maxelt , lstelt

, xyznod , volume

, coefa , coefb

’

14

’

’

! Purpose:

! User subroutine.

! Initialize variables

! (restart or not) before the loop time step

This subroutine is called at beginning of the computation
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! This subroutine enables to initialize or modify (for restart)

! unkown variables and time step values

! rom and viscl values are equal to ro0 and visclO or initialize
! by reading the restart file
! viscls and cp variables (when there are defined) have no value

! excepted if they are read from a restart file

! Physical quantities are defined in the following arrays:
! propce (physical quantities defined at cell center),
! propfa (physical quantities defined at interior face center),

! propfa (physical quantities defined at border face center).

! Examples:

! propce(iel, ipproc(irom (iphas))) means rom (iel, iphas)

! propce(iel, ipproc(iviscl (iphas))) means viscl(iel, iphas)

! propce(iel, ipproc(icp (iphas))) means cp (iel, iphas)

! propce(iel, ipproc(ivisls(iscal))) means visls(iel, iscal)

! propfa(ifac, ipprof(ifluma(ivar))) means flumas(ifac, ivar)
! propfb(ifac, ipprob(irom (iphas))) means romb (ifac, iphas)
! propfb(ifac, ipprob(ifluma(ivar))) means flumab(ifac, ivar)

! Modification of the behaviour law of physical quantities (rom, viscl,
! viscls, cp) is not done here. It is the purpose of the user subroutine

! usphyv

! Cells identification

! Cells may be identified using the 'getcel' subroutine.
! The syntax of this subroutine is described in the 'usclim' subroutine,

! but a more thorough description can be found in the user guide.

! Arguments

I

! name 'typelmode ! role

I I | I |
! idbiaOl '"'i ! <-= ! number of first free position in ia
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! idbral !'"'i ! <-= ! number of first free position in ra

! ndim 'i ! <-— ! spatial dimension

! ncelet Vi ! <-=-= ! number of extended (real + ghost) cells

! ncel 'i ! <= ! number of cells

! nfac !'i ! <= ! number of interior faces

! nfabor ' i ! <-= ! number of boundary faces

! nfml ' 1 ! <-= ! number of families (group classes)

! nprfml ' i I <-= ! number of properties per family (group class)
! nnod 'i ! <--= ! number of vertices

! 1ndfac !''i ! <-— ! size of nodfac indexed array

! Indfbr !'i ! <-— ! size of nodfbr indexed array

! ncelbr !'"'i ! <== ! number of cells with faces on boundary

! nvar i ! <-- I total number of variables

! nscal ' 1 ! <-= ! total number of scalars

! nphas i1 I <-- ! number of phases

! nideve, nrdeve [N ! <-- ! sizes of idevel and rdevel arrays !
! nituse, nrtuse [N ! <-- ! sizes of ituser and rtuser arrays !
! ifacel (2, nfac) ! ia ! <-- ! interior faces -> cells connectivity

! ifabor (nfabor) ! ia ! <-- ! boundary faces -> cells connectivity

! ifmfbr (nfabor) ! ia ! <-- ! boundary face family numbers

! ifmcel (ncelet) !''ia ! <== ! cell family numbers

! iprfml ! ia ! <-- ! property numbers per family

! (nfml, nprfml) ! ! !

! maxelt [N ! <--— ! max number of cells and faces (int/boundary)

! lstelt (maxelt) ! ia ! --- ! work array

! ipnfac(nfac+l) ! ia ! <-- ! interior faces -> vertices index (optional)

! nodfac (lndfac) ! ia ! <-- ! interior faces -> vertices list (optional) !
! ipnfbr (nfabor+l) ! ia ! <-- ! boundary faces -> vertices index (optional) !
! nodfbr (1ndfbr) ! ia ! <-- ! boundary faces -> vertices list (optional) !
! idevel (nideve) ! ia ! <-> ! integer work array for temporary development

! ituser (nituse) ! ia ! <-> ! user-reserved integer work array

! dia(*) ' ia ! === ! main integer work array

! xyzcen ! ra | <-- ! cell centers

! (ndim, ncelet) ! ! ! !
! surfac ! ra ! <-- ! interior faces surface vectors

! (ndim, nfac) ! ! ! !

! surfbo ' ra ! <-- boundary faces surface vectors
! (ndim, nfabor) ! ! !

! cdgfac ! ra ! <--= ! interior faces centers of gravity
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! (ndim, nfac) ! ! ! !

! cdgfbo ' ra ! <-- boundary faces centers of gravity
! (ndim, nfabor) ! ! !

! xyznod ! ra ! <--= ! vertex coordinates (optional)

! (ndim, nnod) ! ! ! !

! volume (ncelet) ' ra ! <-== ! cell volumes

! dt (ncelet) ' ra ! <-—= ! time step (per cell) !
! rtp(ncelet, ¥*) ! ra ! <-- ! computed variables at cell centers at current

! ! ! ! time steps !
! propce(ncelet, *)! ra ! <-- ! physical properties at cell centers !
! propfa(nfac, *) ! ra ! <-- ! physical properties at interior face centers !

! propfb(nfabor, *)! ra ! <-- physical properties at boundary face centers !

! coefa, coefb 'ra ! <-- boundary conditions

! (nfabor, *) ! ! ! !

! rdevel (nrdeve) ! ra ! <-> ! real work array for temporary development !
! rtuser (nrtuse) ' ra | <-> ! user-reserved real work array
I ra(*) ' ra ! =—- ! main real work array

! Type: i (integer), r (real), s (string), a (array), 1 (logical),
! and composite types (ex: ra real array)

! mode: <-- input, --> output, <-> modifies data, --- work array

implicit none

! Common blocks

include "dimfbr.h"
include "paramx.h"
include "pointe.h"
include "numvar.h"
include "optcal.h"
include "cstphy.h"
include "cstnum.h"
include "entsor.h"
include "lagpar.h"

include "lagran.h"

Page 37 of 77



PerAWaT

WG3 WP2 D5b

include "parall.h"

include "period.h"

include "ppppar.h"

include "ppthch.h"

include "ppincl.h"

!

! Arguments

integer ilelt, nlelt, nlelt2

integer idbia0 , idbral

integer ndim , ncelet , ncel , nfac , nfabor
integer nfml , nprfml

integer nnod , lndfac , 1lndfbr , ncelbr

integer nvar , nscal , nphas

integer nideve , nrdeve , nituse , nrtuse

integer ifacel (2,nfac) , ifabor (nfabor)

integer ifmfbr (nfabor) , ifmcel (ncelet)

integer iprfml (nfml, nprfml), maxelt, lstelt (maxelt)
integer ipnfac(nfac+l), nodfac(lndfac)

integer ipnfbr (nfabor+1l), nodfbr (1ndfbr)

integer idevel (nideve), ituser (nituse), ia(*)
double precision xyzcen (ndim,ncelet)

double precision surfac(ndim,nfac), surfbo(ndim,nfabor)
double precision cdgfac(ndim,nfac), cdgfbo(ndim,nfabor)
double precision xyznod(ndim,nnod), volume (ncelet)

double precision dt(ncelet), rtp(ncelet,*), propce(ncelet,*)
double precision propfa(nfac,*), propfb(nfabor, *)

double precision coefa(nfabor,*), coefb(nfabor, *)

double precision rdevel (nrdeve), rtuser (nrtuse), ra(*)

! Local variables

logical switchl, switch2

real random

'real, parameter pi = 3.141592653589790

double precision, parameter :: RotorR = 9.0 ! metres
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double precision =zmax, zmin

double precision angle_switch
double precision temprtp(ncelet,1)

double precision x dist, y dist, z_dist, radius, disc_patch,area_ sum

integer idebia, idebra,impout(6),ii

integer ielt,iel, iutile, iell,iel2, i, j, ival,ival2

integer ifac, inb, inb2, itest, n_passes, ipass,n,nbe,Nrec,Nfarm

integer (8) ihuge

integer, parameter :: Nfarmax = 7 ! number of turbines modelled

integer, parameter :: NbemCellmax = 10000 ! number of field cells involved in actuator
discs

double precision xTurb centre(7) != (/-0.405,0.0,0.405/)

double precision chordl, chord2, twistl, twist2, frac vall, frac val,radiusl,radius2, v_small

double precision deg2rad, dist diff, cell size

Integer ifac2, n_of f, jmax,jmin, isnbb,Number Of Faces,ifbn,nbelm
Logical ifind, iswitchl,iswitch2
type (b_section), pointer :: current, bucket
1
! 1. 1Initialization of local variables

idebia = idbial

idebra = idbral

ihuge = 2.0el0

v_small 1.0d-6

deg2rad = pi/180.0

xTurb_centre(l) = 27.0

xTurb _centre(2) = 0.0
xTurb_centre(3) = -27.0

xTurb centre(4) = 40.5
xTurb_centre(5) = 13.5
xTurb_centre(6) = -13.5
xTurb_centre(7) = -40.5
rotor_radius = RotorR ! metres

do i =1, ncel

do jJ =1, 6

con(i,j) = -ihuge
nbcell (i, j) = -ihuge
enddo

enddo
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PHRxxdkgxdkxkxkxxkxxkxxpind smallest cell size at inlet

cell size = huge(1.0)

call getfbr ('INLET', nlelt, lstelt)
nlelt2 = nlelt - 1

do ielt = 1, nlelt2

ifac

lstelt (ielt)
ifac2 =lstelt(ielt + 1)
dist_diff = dabs( cdgfbo(2,ifac) - cdgfbo(2,ifac2) )
if (cell size > dist diff) then

cell size = dist diff

endif

enddo

! Global Minimum

if (irangp.ge.0) then
call parmin(cell size)

endif

if (irangp.le.0) then

print*, 'pi = ',pi
print*, 'smallest cell size = ',cell size
endif

1% %k ok ok ok sk ok ok ok ke k ok sk ke ok ok ok sk ke sk ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

! 2. Unknown variables initialization:

! ONLY done if there is no restart computation

! -——- Example: 1isca(l) is the variable number in RTP related to the first
! user—-defined scalar variable
! rtp(iel,isca(l)) is the value of this variable in cell number

! iel.

!**************************** isuite lf block checking for restart***************
if (isuite.eqg.0) then

I do ii =1, 1

! dimpout (ii) = impusr(ii)

'enddo

!open (impout (1), file="test result.dat')
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! 3. Building connectivity between particular indexed cell in the flow field and

! its local neighbour cells. For a hexahedral cell this involves 6 neighbours

do ifac = 1, nfac
iell = ifacel(l, ifac)
iel2 = ifacel(2,ifac)
switchl = .true.
switch2 = .true.

doi=1, 6

if ((switchl).and. (con(iell, i) .eqg. (-ihuge) )) then
con(iell,i) = ifac
switchl = .false.
endif
if ((switch2).and. (con(iel2,1i) .eq. (-ihuge) )) then
con(iel2,i) = ifac
switch2 = .false.
endif
enddo
enddo
do i = 1, ncel
rtp(iel, isca(l) ) = 0.0
enddo
|
! Checking parallel code
!
ii = ncel

! global sum
if (irangp.ge.0) then
call parcpt(ii)
endif
if (irangp.le.0) then
print*, 'total number of cells =',ii

endif

! Now setup rotor blade design assocaited with all turbines of the farm
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blade_scale = 1.0
allocate (AD _position (NbemCellmax))
allocate (blade position(100))
call read blade design(n_be)
if (n_be == 0) then
'if (irangp.ge.0) then
print*, 'stopping no blade design data'
lendif
stop
endif

if (irangp.le.0) then

print*,'n be =',n be
endif
nbelm = 0

do Nfarm = 1,Nfarmax
nMax elms_ start (Nfarm) = nbelm + 1
area_sum = 0.d0
if (Nfarm == 1) then
call getcel('X < 36.0 and X > 18.0 and Y > -9.0 and Y < 9.0 and Z > -5.891 and Z < 2.091"', &
nlelt, lstelt)
zmin = -5.891 ;zmax = 2.091
else if (Nfarm == 2) then
call getcel('X < 9.0 and X > -9.0 and ¥ > -9.0 and Y < 9.0 and Z > -5.891 and Z < 2.091"'", &
nlelt, lstelt)
zmin = -5.891 ;zmax = 2.091
else if (Nfarm == 3) then
call getcel('X < -18.0 and X > -36.0 and Y > -9.0 and Y < 9.0 and Z > -5.891 and 2 < 2.091"', &
nlelt, lstelt)
zmin = -5.891 ;zmax = 2.091
else if (Nfarm == 4) then
call getcel('X < 49.5 and X > 31.5 and ¥ > -9.0 and ¥ < 9.0 and Z > -77.891 and Z < -69.911"', &
nlelt, lstelt)
zmin = -77.891 ;zmax = -69.911

else if (Nfarm == 5) then
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call getcel('X < 22.5 and X > -4.5 and ¥ > -9.0 and Y < 9.0 and Z > -77.891 and Z < -69.911", &
nlelt, lstelt)
zmin = -77.891 ;zmax = -69.911
else if (Nfarm == 6) then

call getcel('X < -4.5 and X > -22.5 and Y > -9.0 and Y < 9.0 and Z > -77.891 and Z < -69.911",

&
nlelt, lstelt)
zmin = -77.891 ;zmax = -69.911
else if (Nfarm == 7) then
call getcel('X < -31.5 and X > -49.5 and Y > -9.0 and Y < 9.0 and Z > -77.891 and Z < -69.911",
&
nlelt, lstelt)
zmin = -77.891 ;zmax = -69.911
endif

do ilelt = 1, nlelt

iel = lstelt(ilelt)

x dist = xyzcen(l,iel) - xTurb_ centre (Nfarm)
y_dist = xyzcen(2,iel)
z_dist = xyzcen(3,iel)

radius = dsqgrt((x_dist * x dist) + (y_dist * y dist) )
if ((radius <= rotor_ radius).and.(z_dist > zmin).and. (z_dist < zmax)) then
doi=1, 6
1k ko ok ok ok ok ok ok ok ok ok ok Kk K ok ok ok kK K ok ok ok ok Kk ok ok k
if (con(iel,i) > -1) then
disc_patch = surfac(3,con(iel,i))
if (disc_patch > 0.d0) then
area_sum = area sum + disc _patch * 0.5
! used as a maker in debugging
rtp(iel, isca(l) ) = 10.0
endif
endif
!******************************
enddo
endif
enddo
if (irangp.ge.0) then
call parsom(area sum)
endif
Frontal Area (Nfarm) = area_sum

if (irangp.le.0) then
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print*, 'time zero area_sum = ', Frontal Area(Nfarm),' Turbine number = ', Nfarm

endif

! Now setup the Actuator Disc

if (Nfarm == 1) then
call getcel('X < 36.0 and X > 18.0 and Y > -9.0 and ¥ < 9.0 and Z > -5.891 and Z < 2.091"', &
nlelt, lstelt)
zmin = -5.891 ;zmax = 2.091
else if (Nfarm == 2) then
call getcel('X < 9.0 and X > -9.0 and ¥ > -9.0 and ¥ < 9.0 and Z > -5.891 and Z < 2.091"'", &
nlelt, lstelt)
zmin = -5.891 ;zmax = 2.091
else 1if (Nfarm == 3) then
call getcel('X < -18.0 and X > -36.0 and Y > -9.0 and Y < 9.0 and Z > -5.891 and Z < 2.091"', &
nlelt, lstelt)
zmin = -5.891 ;zmax = 2.091
else 1f (Nfarm == 4) then
call getcel('X < 49.5 and X > 31.5 and ¥ > -9.0 and Y < 9.0 and Z > -77.891 and Z < -69.911", &
nlelt, lstelt)
zmin = -77.891 ;zmax = -69.911
else if (Nfarm == 5) then
call getcel('X < 22.5 and X > -4.5 and Y > -9.0 and Y < 9.0 and Z > -77.891 and Z < -69.911", &
nlelt, lstelt)
zmin = -77.891 ;zmax = -69.911
else if (Nfarm == 6) then

call getcel('X < -4.5 and X > -22.5 and Y > -9.0 and Y < 9.0 and Z > -77.891 and Z < -69.911",

&
nlelt, lstelt)
zmin = -77.891 ;zmax = -69.911
else if (Nfarm == 7) then
call getcel('X < -31.5 and X > -49.5 and Y > -9.0 and Y < 9.0 and Z > -77.891 and Z < -69.911",
&
nlelt, lstelt)
zmin = -77.891 ;zmax = -69.911
endif

do ilelt = 1, nlelt
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iel = lstelt(ilelt)

x_dist = xyzcen(l,iel) - xTurb_centre (Nfarm)
y_dist = xyzcen(2,iel)
z_dist = xyzcen(3,iel)

radius = dsqgrt((x_dist * x dist) + (y_dist * y dist) )

if ((radius <= rotor radius).and.(z_dist > zmin).and. (z_dist < zmax)) then
nbelm = nbelm + 1
AD position(nbelm)%nCel = iel
AD position(nbelm)%rad = radius

! find frontal area of cell and azimuthal angles

! about the centre on the actuator disc

area_sum = 0.d0
doi=1, 6
if (con(iel,i) > -1) then

disc_patch = surfac(3,con(iel,i))

if (disc_patch > 0.d0) then

area_sum = area sum + disc patch * 0.5

endif

endif

enddo
! ****************Global sum R R Rk Ik Ik kb b i i
'if (irangp.ge.0) then
! parsom(area_sum) !remove ?
lendif
l*******************************************
AD position(nbelm)%elm area = area_ sum
AD position(nbelm)%azim deg = datan2(y dist,x dist)
AD position(nbelm)%frac_v = 0.0
! Calculate blade design chord and twist from blade
! design table
ifind = .true.

don=1, nbe -1
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radiusl = blade_scale * (blade position (n)%rad)
radius2 = blade scale * (blade position(n + 1)%rad)

! ———— set up Actuator Disc elements—--—--—--——-—--——-————
if ( (radius >= radiusl) .and. (radius <= radius2)) then
ifind = .false.
frac vall = radius2 - radiusl
if (dabs(frac_vall) < v_small) then

call error _message ("Error with blade design table")

endif

frac_val = (radius - radiusl)/frac_vall

AD position(nbelm)%frac v = frac val

chordl = blade scale * (blade position(n)%chord)

chord2 = blade scale * (blade position(n+l)%chord)

AD position(nbelm)%chord = chordl + (chord2 - chordl) * frac val

twistl = deg2rad * (blade position(n)%theta)
twist2 = deg2rad * (blade position(n+l)%theta)

AD position(nbelm)%twist = twistl + (twist2 - twistl) * frac val

nullify(AD position(nbelm)%ptr Belementl)

allocate (AD position(nbelm)%ptr Belementl)

AD position(nbelm)%ptr Belementl = blade position(n)%ptr_ bsection
Nrec = blade position(n)%rec_count

AD position(nbelm)%Nrecl = Nrec

current => AD position(nbelm)%ptr Belementl

bucket => blade position(n)%ptr bsection

do i = 1, Nrec

current%alpha = deg2rad * bucket%alpha

current%cl = bucket%cl
current%cd = bucket%cd

allocate (current%next)
nullify( current%next%next )
current => current%next
bucket => bucket%next

enddo

nullify(AD position(nbelm)%ptr Belement2)

allocate (AD position(nbelm)%ptr_ Belement2)

AD position(nbelm)%ptr Belement2 = blade position(n+l)3%ptr bsection
Nrec = blade position(n+l)%rec count

AD position(nbelm)%Nrec2 = Nrec
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current => AD position(nbelm)%ptr Belement2
bucket => blade position(n+l)%ptr_bsection
do i = 1, Nrec

current%alpha = deg2rad * bucket%alpha

current%cl = bucket%cl
current%cd = bucket%cd

allocate (current%next)
nullify( current%next%$next )
current => current%next
bucket => bucket%next

enddo

exit

else i1f (radius < radiusl) then
AD_position(nbelm)%chord = blade scale * blade position(1l) %chord

AD position(nbelm)%twist = deg2rad * blade position(l)%theta

nullify(AD position(nbelm)%ptr Belementl)

allocate (AD _position(nbelm)sptr Belementl)

AD position(nbelm)%ptr Belementl = blade position(1l)%ptr bsection

Nrec = blade position(1l)%rec_count

AD position(nbelm)%Nrecl = Nrec

current => AD position(nbelm)%ptr Belementl

bucket => blade position(l)%ptr bsection
do i = 1, Nrec

current%alpha = deg2rad * bucket%alpha

current%cl = bucket%cl
current%cd = bucket%cd

allocate (current%next)
nullify( current%next%next )
current => current%next
bucket => bucket%next

enddo

nullify(AD position(nbelm)%ptr Belement2)

allocate (AD _position(nbelm)%ptr_ Belement2)

AD position(nbelm)%ptr Belement2 = blade position(l)%ptr_bsection

Nrec = blade position(l)%rec count

AD position(nbelm)%Nrec2 = Nrec
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current => AD position(nbelm)%ptr Belement2

bucket => blade position(l)%ptr_bsection
do i = 1, Nrec

current%alpha = deg2rad * bucket%alpha

current%cl = bucket%cl
current%cd = bucket%cd

allocate (current%next)
nullify( current%next%next )
current => current%next
bucket => bucket%next

enddo

enddo

! if (ifind) then

! print*, 'element ',nbelm,' at radius = ',AD position (nbelm)%rad
! endif
endif
g g g g g g M
1 v e A A
g g g g g g
enddo
| o e
! enddo -- Setup each of the Nfarm turbines associated with modelled tidal turbine farm

! ——--start and stop element no for each turbine

nMax elms stop(Nfarm) = nbelm

! print‘k’ Thhkkhrkhkkhkhkhhkhkhkhhhkhkhkhkhhkhkhkhkhhkhkhkrhkhkrhkrhkhxkhx!

! print*,' Processor number = ',irangp

! print*,' Turbine number of farm = ',Nfarm

! print*,' nMax elms start = ',nMax elms start (Nfarm)
! print*,' nMax elms stop = ',nMax elms stop (Nfarm)

! print*, LR Ik k2 kb Ik bk kb 2h b bk bk b 3h h b b b 2k b b b b b b ik A |

enddo
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'if (irangp.le.0) then

!do ii =1, 1

! close (impout (ii))

! enddo

IR R RS R EEEEEEEEEEEEEEEEEESEEEEEEEEEE S isuite if block***************

endif | xxkxxkxxkxxkxend of 1f block of isuite if block
if (irangp.le.0) then
print*, 'end of usinv'
endif
return
contains
subroutine read blade design (n)
use turbine design

implicit none

type (b _section), pointer :: current,previous
double precision rad, theta, chord, dummy
integer n, itd ,ic,isec
character a_naml * 30
character a_nam2 * 30
rad = 1.0
n =0
open (unit=9,FILE="'blade.txt',status='old")
do while(rad > 0)
read (9, *) rad, theta, chord, dummy,a naml,a nam2
if (rad > 0) then
n=mn+1
blade position(n)S%rad = rad
blade position(n)%theta = theta
blade position(n)%chord = chord

dummy = dummy * 100.0

Page 49 of 77



PerAWaT

WG3 WP2 D5b

if (mod(dummy,1.0) < 0.5) then

itd = int (dummy)
else
itd = int (dummy) + 1
endif
allocate (blade position (n)%Bsection)
blade position(n)%Bsection = a naml
call read blade section(n,itd,blade pos
endif
enddo
close (unit=9)

return

end subroutine read blade design

ition(n))

subroutine read blade_ section (ibdpos, ithk
use turbine design

implicit none

type (blade element) :: bld ptr
type (b_section), pointer :: current
double precision alpha,cl,cd

integer count, ithk chd,ithk,ibld, i
integer new_cnt, ithknew, ibdpos
character nam_given *20

character file type *6

character file name * 30

character file namel * 30

character icheck * 2

logical ex, swit

integer, parameter :: no of bsecs = 2
integer, parameter :: 1lift first = 1 !
file type = '.txt'

swit = .true.

nam given = bld ptr%Bsection

count = index(nam_given,' ') - 1

file name = nam given(l:count) // file t

if ((ithk > 9).and. (ithk < 100)) then
icheck = nam_given (count-1:count)
read (icheck, *) ithk chd

write (icheck, ' (i2)')ithk chd

, bld ptr)

chks, ic2

1 is for yes otherwise no

ype
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file name = nam given(l:count-2) &
// icheck// file type
else
ithk chd = ithk
swit = .false.

inquire (FILE= file name,exist= ex)

if (ex.egv..true.) then
if (irangp.le.0) then 'new
print*,file name,' found'
endif
else
print*, 'Error no ',file name,' file included'
stop
endif
endif
v~ Select the necessary blade section files~~~~

if (swit) then
do ichks = 1, no_of bsecs
ithknew = ithk chd
do while (ithknew > 9)
inquire (FILE= file name,exist= ex)
if (ex.eqv..true.) then
if (irangp.le.0) then 'new
print*,file name,' found'
endif
exit
endif
ithknew = ithknew - 1
write (icheck, ' (i2) ') ithknew
file name = nam _given(l:count-2) &
// icheck// file type
enddo
if (ex .eqv..false.) then
if (irangp.le.0) then 'new
print*, 'warning ', file name, ibdpos
endif
else
exit

endif
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allocate (bld ptr%ptr_ bsection)
if (ex) then
!print*, 'the file is ',file name
open (unit=10,FILE= file name,status='old"')
current => bld ptr%ptr bsection
alpha = 0.0
count =1
do
if ( lift first == 1) then
read (10, *)alpha,cl,cd
else

read (10, *)alpha,cd,cl

endif

if (alpha == -999) then
count = count - 1

exit

endif

current%alpha = alpha

current%cl = cl
current%cd = cd

allocate( current%$next )

count = count + 1

currents%next%alpha = -999
current$next%cl = -999
current$next%cd = -999

nullify( current%next%next )
current => current%next
enddo
close (unit=10)
else
count = 0

current => bld ptr%ptr_bsection

current%alpha = -999
current%cl = -999
current%cd = -999

allocate( current%next )

nullify( current%next%next )
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endif
L N T N N
bld ptr%rec_count = count

return

end subroutine read blade section

end subroutine usiniv
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Appendix C

usclim.f90

subroutine usclim &

( idbia0 , idbra0

ndim , ncelet
nnod , lndfac
nvar , nscal

nideve , nrdeve
ifacel , ifabor

ipnfac , nodfac
icodcl , itrifb

idevel , ituser

xyzcen , surfac
dt , rtp
coefa , coefb
wl , W2
rdevel , rtuser

ncel
Indfbr
nphas
nituse
ifmfbr
ipnfbr
faceBC
ia
surfbo
rtpa
rcodcl
w3

ra

’

nfac

ncelbr

nrtuse

ifmcel

nodfbr

cdgfac

propce

w4

’

nfabor

iprfml

cdgfbo

propfa

w5

nfml

maxelt

xyznod

propfb

w6

’

’

’

’

nprfml

lstelt

volume

coefu

’

’

’

’

implicit none

! Common blocks

include "paramx.h"
include "pointe.h"
include "numvar.h"
include "optcal.h"
include "cstphy.h"
include "cstnum.h"

include "entsor.h"
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include "parall.h"

include "period.h"

include "ihmpre.h"

! Arguments

integer
integer
integer
integer
integer

integer

integer
integer
integer
integer
integer
integer
integer

integer

! T have NO idea what all this is. Left until I work out what it all does.

double

double

double

double

double

double

double

double

double

double

double

double

double

! Local variables

precision
precision
precision
precision
precision
precision
precision
precision
precision
precision
precision
precision

precision

idbia0

ndim

nfml

nnod

nvar

nideve

’

’

idbra0
ncelet
nprfml
Indfac
nscal

nrdeve

ifacel (2,nfac)

ifmfbr (nfabor)

iprfml (nfml, nprfml), maxelt, lstelt (maxelt)

ipnfac(nfac+l),

, ncel , nfac

, nfabor

, lndfbr , ncelbr

, nphas

, nituse , nrtuse

ifabor (nfabor)

ifmcel (ncelet)

nodfac (1lndfac)

ipnfbr (nfabor+1l), nodfbr (1ndfbr)

icodcl (nfabor, nvar)

itrifb(nfabor, nphas),

idevel (nideve),

ituser (nituse),

xyzcen (ndim, ncelet)

surfac (ndim,nfac),
cdgfac (ndim,nfac),
xyznod (ndim, nnod) ,
dt (ncelet),

propce (ncelet, *)

propfa(nfac, *),

coefa (nfabor, *),

rtp (ncelet, *),

propfb (nfabor, *)

coefb (nfabor, *)

rcodcl (nfabor,nvar, 3)

wl (ncelet),w2 (ncelet),w3 (ncelet)

w4 (ncelet) ,wb (ncelet) , w6 (ncelet)

coefu(nfabor,ndim)

rdevel (nrdeve),

rtuser (nrtuse),

faceBC (nfabor, nphas)

ia(*)

surfbo (ndim, nfabor)
cdgfbo (ndim, nfabor)
volume (ncelet)

rtpa (ncelet, *)

ra(*)
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integer :: fileUnit

integer :: face, phase

integer :: numElems, n, m

real :: x, y, z, pressure, u, Vv, w, k, epsilon, omega

real :: dpfac, dufac, dvfac, dwfac, dkfac, depsfac, domgfac

real, parameter :: kappa=0.41, C mu=0.09, uH=1.0, H=40, y0=0.2
character (*), parameter :: profileType="log"
real :: uFriction

! Variables specific to D.Olivieri's model
real :: yOlivieri

real, parameter :: hOlivieri=25

! ——- Specify and derive constants:

phase =1

! Will probably use this later

! fileUnit = impusr (1)

! ——- Prescribe inlet boundary condition:

! call getfbr ('INLET or BOTTOM or TOP', nlelt, lstelt)

! '1'" is the inlet boundary

call getfbr ('INLET', numElems, lstelt)
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! Note that the list of elements is actually a list of faces

do n=1, numElems

! Get face index from list

face = lstelt (n)

! Set boundary condition type. 'ientre' = inlet (Dirichlet, sort of).

faceBC(face, phase) = ientre

! Get coordinates of the current face

x = cdgfbo(l, face)

! David Olivieri's co-ordinate system is centred around the turbine hub.
yOlivieri = cdgfbo (2, face)
! Transpose this to height above seabed

y = yOlivieri + hOlivieri

z = cdgfbo (3, face)

u =20
v =20
w =0
k=0

epsilon = 0

if (profileType=="1linear") then

w = (y/40) * uH

elseif (profileType=="log") then

uFriction = (uH * kappa) / log(H/y0)

if (y>y0) then

w (uFriction/kappa) * log(y/y0)

else
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end 1if

! k-eps turbulence model
if (iturb (phase) == 20) then
! Calculate profiles for u, v, w, k and epsilon

k = (uFriction**2.) / sqrt(C_mu)

if (y>y0) then

epsilon = (uFriction**3.) / (kappa * y)
else
epsilon = 0
end 1if
! rcodcl (face, ik (phase), 1) =k
! rcodcl (face, iep(phase), 1) = epsilon
! k-omega turbulence model - currently disabled
elseif (iturb (phase) == 60) then

print*, "error: can't use k-omega SST for rough wall boundary layers"

stop

end if

else

print*, "error: usclim.f90: unknown profile type"

stop

end if

! Specify values according to turbulence model:

rcodcl (face, iu(phase), 1) = u
rcodcl (face, iv(phase), 1) = v
rcodcl (face, iw(phase), 1) = -w
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enddo ! END loop through faces

end subroutine usclim
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Appendix D

ustsns.f90

! This file is part of the Code_Saturne Kernel, element of the

! Code_Saturne CFD tool.
! Copyright (C) 1998-2009 EDF S.A., France
! contact: saturne-support@edf.fr

! The Code_Saturne Kernel is free software; you can redistribute it
! and/or modify it under the terms of the GNU General Public License
! as published by the Free Software Foundation; either version 2 of

! the License, or (at your option) any later version.

! The Code_ Saturne Kernel is distributed in the hope that it will be
! useful, but WITHOUT ANY WARRANTY; without even the implied warranty
! of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

! GNU General Public License for more details.

! You should have received a copy of the GNU General Public License
! along with the Code Saturne Kernel; if not, write to the

! Free Software Foundation, Inc.,

! 51 Franklin St, Fifth Floor,

! Boston, MA 02110-1301 USA

subroutine ustsns &

( idbia0 , idbral , &

ndim , ncelet , ncel , nfac , nfabor , nfml , nprfml , &
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|

nnod , lndfac , 1lndfbr , ncelbr , &
nvar , nscal , nphas , ncepdp , ncesmp , &
nideve , nrdeve , nituse , nrtuse , &
ivar , iphas , &
ifacel , ifabor , ifmfbr , ifmcel , iprfml , maxelt , lstelt , &
ipnfac , nodfac , ipnfbr , nodfbr , &
icepdc , icetsm , itypsm , &
idevel , ituser , ia , &
xyzcen , surfac , surfbo , cdgfac , cdgfbo , xyznod , volume , &
dt , rtpa , propce , propfa , propfb , &
coefa , coefb , ckupdc , smacel , &
crvexp , crvimp , &
dam , xam , &
wl , w2 , W3 , wé , wWH , WO , &
rdevel , rtuser , ra )
Purpose:

User subroutine.

Additional right-hand side source terms for velocity components equation

(Navier-Stokes)

The routine is called for each velocity component. It is therefore necessary
to test the value of the variable ivar to separate the treatments of the

components iu(iphas), iv(iphas) or iw(iphas) .

The additional source term is decomposed into an explicit part (crvexp) and

an implicit part (crvimp) that must be provided here.

The resulting equation solved by the code for a velocity component u is:

rho*volume*du/dt + .... = crvimp*u + crvexp

Note that crvexp and crvimp are defined after the Finite Volume integration

over the cells, so they include the "volume" term. More precisely:
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! - crvexp 1is expressed in kg.m/s2

! - crvimp is expressed in kg/s

! The crvexp and crvimp arrays are already initialized to O before entering the

! the routine. It is not needed to do it in the routine (waste of CPU time).

! For stability reasons, Code_ Saturne will not add -crvimp directly to the

! diagonal of the matrix, but Max(-crvimp,0). This way, the crvimp term is

! treated implicitely only if it strengthens the diagonal of the matrix.

! However, when using the second-order in time scheme, this limitation cannot

! be done anymore and -crvimp is added directly. The user should therefore test

! the negativity of crvimp by himself.

! When using the second-order in time scheme, one should supply:
! - crvexp at time n

! - crvimp at time n+1/2

! The selection of cells where to apply the source terms is based on a getcel
! command. For more info on the syntax of the getcel command, refer to the

! user manual or to the comments on the similar command getfbr in the routine

! usclim.

| e e
! Arguments

|

! name 'type!mode ! role

! ! ! ! !
! idbial i1 ! <=-= ! number of first free position in ia

! idbral i1 ! <=-= ! number of first free position in ra

! ndim 'i ! <--= ! spatial dimension

! ncelet i1 I <== ! number of extended (real + ghost) cells !
! ncel ''i ! <-= ! number of cells

! nfac ' 1 ! <-= ! number of interior faces

! nfabor i1 ! <-=-= ! number of boundary faces

! nfml i1 ! <-=-= ! number of families (group classes) !
! nprfml i1 ! <-=-= ! number of properties per family (group class) !
! nnod i1 ! <-=-= ! number of vertices

! 1ndfac 'i1i ! <-= ! size of nodfac indexed array
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! Indfbr

! ncelbr

! nvar

! nscal

! nphas

! ncepdp

! ncssmp

! nideve, nrdeve
! nituse, nrtuse
! ivar

! iphas

! ifacel (2, nfac)
! ifabor (nfabor)
!' ifmfbr (nfabor)
! ifmcel (ncelet)
! iprfml

! (nfml, nprfml)
! maxelt

! 1stelt (maxelt)
! ipnfac(nfac+1l)
! nodfac (1lndfac)
! ipnfbr (nfabor+l)
! nodfbr (1ndfbr)
! icepdc (ncepdp)
! icetsm(ncesmp)
! itypsm

! (ncesmp, nvar)
! idevel (nideve)
! ituser (nituse

! ia(*)

! xyzcen

! (ndim, ncelet)
! surfac

! (ndim, nfac)

! surfbo

! (ndim, nfavor)
! cdgfac

! (ndim, nfac)

! cdgfbo

! (ndim, nfabor)

ia

ia

ia

ia

ia

ia

ia

ia

ia

ia

ia

ia

ia

ia

ia

ia

ra

ra

ra

ra

ra

size of nodfbr indexed array

number of cells with faces on boundary
total number of variables

total number of scalars

number of phases

number of cells with head loss terms
number of cells with mass source terms
sizes of idevel and rdevel arrays
sizes of ituser and rtuser arrays
index number of the current variable
index number of the current phase
interior faces -> cells connectivity
boundary faces -> cells connectivity
boundary face family numbers

cell family numbers

property numbers per family

max number of cells and faces (int/boundary)

work array

interior faces -> vertices index (optional)

interior faces -> vertices list (optional)

boundary faces -> vertices index (optional)

boundary faces -> vertices list (optional)

index number of cells with head loss terms

index number of cells with mass source terms

type of mass source term for each variable
(see ustsma)

integer work array for temporary developpement

user-reserved integer work array

main integer work array

cell centers

interior faces surface vectors

boundary faces surface vectors

interior faces centers of gravity

boundary faces centers of gravity
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! xyznod !
! (ndim, nnod) !
! volume (ncelet) !
! dt (ncelet) !
! rtpa !
! (ncelet, *) !
! propce (ncelet, *)!
! propfa(nfac, *) !
! propfb(nfabor, *)!
! coefa, coefb !
! (nfabor, *) !
! ckupdc (ncepdp, 6) !
! smacel !
! (ncesmp, nvar) !
! crvexp !
! crvimp !
! dam(ncelet) !
! xam(nfac,?2) !
' wl1,2,3,4,5,6 !
! (ncelet) !
! rdevel (nrdeve) !
! rtuser (nituse !

! ra(*) !

ra

ra

ra

ra

ra

ra

ra

ra

ra

ra

ra

ra

ra

ra

ra

ra

ra

ra

vertex coordinates (optional)

cell volumes

time step (per cell)

calculated variables at cell centers
(preceding time steps)

physical properties at cell centers

physical properties at interior face centers

physical properties at boundary face centers

boundary conditions

head loss coefficient

value associated to each variable in the mass

source terms or mass rate (see ustsma)
explicit part of the source term
implicit part of the source term
work array
work array
work arrays
(computation of pressure gradient)
real work array for temporary developpement
user-reserved real work array

main real work array

! Type: 1 (integer),

! and composite types

! mode: <-- input,

(real), s (string), a (array), 1 (logical),

(ex: ra real array)

--> output, <-> modifies data, --- work array

use turbine_design
use connectivity

implicit none

! Common blocks

include "dimfbr.h"

include "paramx.h"
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include "pointe.h"

include "numvar.h"

include "entsor.h"

include "optcal.h"

include "cstphy.h"

include "cstnum.h"

include "lagpar.h"

include "lagran.h"

include "parall.h"

include "period.h"

include "ppppar.h"

include "ppthch.h"

include "ppincl.h"

!

! Arguments

integer idbia0 , idbraOl

integer ndim , ncelet , ncel , nfac , nfabor
integer nfml , nprfml

integer nnod , lndfac , 1lndfbr , ncelbr
integer nvar , nscal , nphas

integer ncepdp , ncesmp

integer nideve , nrdeve , nituse , nrtuse
integer ivar , iphas

integer ifacel (2,nfac) , ifabor (nfabor)
integer ifmfbr (nfabor) , ifmcel (ncelet)
integer iprfml (nfml,nprfml), maxelt, lstelt (maxelt)
integer ipnfac(nfac+1l), nodfac (lndfac)
integer ipnfbr (nfabor+1l), nodfbr (lndfbr)
integer icepdc (ncepdp)

integer icetsm(ncesmp), itypsm(ncesmp,nvar)
integer idevel (nideve), ituser (nituse), ia(*)

double precision
double precision
double precision

double precision

xyzcen (ndim, ncelet)
surfac (ndim,nfac), surfbo (ndim,nfabor)
cdgfac (ndim,nfac), cdgfbo (ndim,nfabor)

xyznod (ndim, nnod), volume (ncelet)
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double precision dt(ncelet), rtpa(ncelet,*)

double precision propce (ncelet, *)

double precision propfa(nfac,*), propfb(nfabor, *)
double precision coefa(nfabor,*), coefb(nfabor, *)
double precision ckupdc (ncepdp, 6), smacel (ncesmp,nvar)
double precision crvexp (ncelet), crvimp(ncelet)

double precision dam(ncelet ),xam(nfac ,2)
double precision wl (ncelet),w2 (ncelet), w3 (ncelet)
double precision w4 (ncelet),w5(ncelet),wb (ncelet)

double precision rdevel (nrdeve), rtuser(nrtuse), ra(*)

! Local variables

character*80 chaine

integer idebia, idebra

integer iel, ipcrom, ipp, iutile, ifac,i,Nfarm

integer ilelt, nlelt,iell,iel2, nold tstep,Nrec,ii,impout (10)

integer :: ncall =0 ! fortran static
variable

double precision ckp, gdm, x dist, y dist, radius, disc_patch, z_dist

double precision F_prandtl, tvall,tval2, density, chord, frac val, elm area, azim ang

double precision ux, uy, uz, u_theta, phi, cl, cd, cll, cl2,cdl

double precision cd2,alpha,alphal,density Av

double precision rad2deg,val d, W rel2, W rel

double precision Cn_2D, Ct_2D, Cn_3D, Ct_3D, dF_theta, dF_z, dF_cel_theta, dF _cel _z, k_value
double precision accm T,accm P, C T,C p

'real, parameter :: pi = 3.141592653589740

double precision, parameter :: U inf = 1.0 ! m/s

double precision, parameter :: omega = 0.5 ! rotational speed of turbine in radians per second
integer, parameter :: Nb = 3 ! number of blades with the turbine

integer, parameter :: Nfarmax = 7 ! number of turbines modelled

Logical, parameter :: iflow = .true. ! clockwise rotation from upstream & axial flow

in negative z axis direction
type (b_section), pointer :: ptr bsection

Logical ichk

! blade design variables
integer n, nbelm

type (b_section), pointer :: current,previous,check
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! -— setup output files --

do ii = 1,Nfarmax + 1
impout (ii) = impusr(ii)
enddo

if (irangp.le.0) then

open (impout (1) ,file="CT _Cp resultsl
open (impout (2) ,file="CT_Cp_ results2
open (impout (3) ,file="'CT_Cp_ results3
open (impout (4) ,file="CT_Cp_ results4
open (impout (5),file="'CT_Cp_results)
open (impout (6),file="'CT_Cp_results6
open (impout (7),file='CT_Cp_results7’
open (impout (8),file="'Clcdmap.dat')

endif

.dat")

.dat"')

.dat")

.dat")

.dat")

.dat")

.dat")

! 1. Initialization

idebia = idbial
idebra = idbral
ncall = ncall + 1

rad2deg = 180.0/pi

ipp = ipprtp (ivar)

iphas =1

if (iwarni (ivar) .ge.l) then
chaine = nomvar (ipp)
write (nfecra,1000) chaine(1:8)

endif

ipcrom = ipproc(irom (iphas))

! 2. Calculating current momentum blade element forces
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if ( ncall == 1) then
do Nfarm = 1, Nfarmax
accm T = 0.0
accm_P = 0.0
| *kxxkxxk nhelm loop **** KR KK AKK KKK KK KK
if (nMax_elms_stop(Nfarm) > 1) then

do nbelm = nMax_elms_start (Nfarm), nMax elms_stop (Nfarm)

iel = AD position(nbelm)%nCel
x dist = xyzcen(l,iel)

y_dist = xyzcen(2,1iel)

z _dist = xyzcen (3,1iel)

density = propce(iel,ipcrom)
radius = AD_position(nbelm)%rad
chord = AD_position(nbelm)%chord

frac_val = AD position(nbelm)%frac v
elm area = AD position(nbelm)%elm area

azim_ang = AD position(nbelm)%azim deg

! Calculate blade element forces in blade fixed coordinates

ux = rtpa(iel, iu(iphas) )
uy = rtpa(iel, iv(iphas) )
uz = rtpa(iel, iw(iphas) )

if (iflow) then

uz = -uz

endif

u theta = - (uy * dcos(azim ang)) + (ux * dsin(azim ang) ) + (omega * radius)
phi = datan2 (uz, u_theta)

alpha = phi - AD position(nbelm)%twist

Nrec = AD position(nbelm)%Nrecl

if (Nrec == 0) then
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print*, 'Nrec = ',Nrec
print*,'radius = ',radius,' twist = ',AD position(nbelm)3%twist, &
'phi = ',phi,"' nbelm = ', nbelm
stop
endif

ptr bsection => AD position(nbelm)%ptr Belementl

call find cl cd(alpha,Nrec,ptr _bsection,cll,cdl,ichk)

Nrec = AD position(nbelm)%Nrec2
if (Nrec == 0) then
print*, 'Nrec = ',Nrec
print*, 'radius = ',radius,' twist = ',AD position(nbelm)3%twist, &
'phi = ',phi,"' nbelm = ', nbelm
stop
endif

ptr_bsection => AD position(nbelm)%ptr Belement2
call find cl cd(alpha,Nrec,ptr bsection,cl2,cd2, ichk)
cl = cll + frac_val * (cl2 - cll)
cd = cdl + frac_val * (cd2 - cdl)
I xkKkxkkxxkkxkx* recoding L/D values on the disc ******xx
if (cd > 0.0) then

clcd val (nbelm) = cl/cd
else

clcd val (nbelm) = 0.0
endif

| % o ok ko ok kK ok ok K ok kK ok ok K ok ok K ok kK ok ok K ok kK ok ok K ok ok Kk ok ko ok kK ok ok K ok ok Kk k
Cn 2D = cl * dcos(phi) + cd * dsin(phi)

Ct 2D = cl * dsin(phi) - cd * dcos(phi)

! Calculating the Prandtl Tip Loss factor F prandtl

if (dabs(radius) < tiny(1.0)) call error message ("errorl ustsns function")
tvall = Nb * (1.0 - rotor radius/radius)
tval2 = 2.0 * dsin(phi)
if (dabs(tval2) > tiny(1.0)) then
F prandtl = (2.0/pi) * dacos(dexp(tvall/tval2))
if ((F_prandtl < 0).or.(F prandtl > 1.0)) call error message ("error2 ustsns function")
else
F prandtl = 1.0
endif

Cn 3D = F prandtl * Cn 2D
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! Note W_rel2 = (uz * uz) + (u_theta * u_theta) has not been included here

! since source terms crimpi & crvexpi require k * W_rel2 format for forces

dF_theta = 0.5 * chord * density * Ct_3D

dF_z

0.5 * chord * density * Cn_3D
dF cel theta = Nb * dF theta * elm area/(2.0 * pi * radius)

dF _cel z = Nb * dF z * elm area/ (2.0 * pi * radius)

! Convert blade element forces into flow fixed coordinates

AD_position (nbelm)$dFX dF_cel theta * dsin(azim_ang)

AD_position (nbelm) $dFY dF_cel theta * dcos(azim_ang)
if (iflow) then

AD position(nbelm)%dFz = dF cel z

else
AD position(nbelm)%dFz = - dF_cel z
endif
W _rel2 = (u_theta * u theta) + (uz * uz)
accm T = accm T + ( dF cel z * W rel2 )/density
accm P = accm P + ( radius * omega * dF cel theta * W _rel2 )/density
enddo

! Kk KKK KKKk nbelm lOOp R R E kb Ik kb b b b b b ik b b

endif
if (irangp.ge.0) then
call parsom(accm T)
call parsom(accm_ P)
endif
density Av = 1.0
if (irangp.le.0) then
C T = accm_T/(0.5 * density Av * Frontal Area(Nfarm) * U_inf * U_inf)

C p = accm P/ (0.5 * density Av * Frontal Area(Nfarm) * U_inf * U_inf * U_inf)

if (Nfarm == 1) then

write (impout(1)," (2i5,2917.9)") ntcabs,Nfarm,C T,C p
else if (Nfarm == 2) then

write (impout (2)," (2i5,2917.9)") ntcabs,Nfarm,C T,C p
else if (Nfarm == 3) then

Page 70 of 77



PerAWaT

WG3 WP2 D5b

9) ™)

9) ™)

9) ™)

write (impout (3)," (21i5,2gl7.
else if (Nfarm == 4) then
write (impout (4)," (21i5,2gl7.
else if (Nfarm == 5) then
write (impout (5)," (21i5,2gl7.
else if (Nfarm == 6) then
write (impout (6)," (21i5,2gl7.
else if (Nfarm == 7) then
write (impout (7)," (21i5,2gl7.
endif
endif

enddo ! end of loop for Nfarm

endif

rho*du/dt = S (+ standard Navier-Stokes terms)
!'In the following example:
= -rho*CKP
= XMMT
'with:
CKP = 1.D0 [1/s ] (return term on velocity)

|

ntcabs,Nfarm,C_T,C_p

ntcabs,Nfarm,C_T,C_p

ntcabs,Nfarm,C_T,C p

ntcabs,Nfarm,C_T,C p

ntcabs,Nfarm,C_T,C p

2.

Example of arbitrary source term for component u:

S =A*u+B

appearing in the equation under the form:

'which yields:

crvimp (iel) = volume (iel)* A =

crvexp (iel) = volume(iel)* B =

MMT = 100.D0 [kg/m2/s2] (momentum production by volume and time unit)

- volume (iel) * (rho*CKP )

volume (iel) * (XMMT

)
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! It is quite frequent to forget to remove this example when it is

! not needed. Therefore the following test is designed to prevent

! any bad surprise.

liutile = 0

'if (iutile.eq.0) return

! Calculate the momentum source terms Sx, Sy and Sz for actuator disc representation

if (nMax_elms_stop (Nfarmax) > 2) then

do nbelm = 1, nMax elms_stop (Nfarmax)
iel = AD position(nbelm)%nCel
ux = rtpa(iel, iu(iphas) )
uy = rtpa(iel, iv(iphas) )
uz = rtpa(iel, iw(iphas) )
radius = AD_position(nbelm)%rad

azim ang = AD position(nbelm)%azim deg

u_theta - (uy * dcos(azim _ang)) + (ux * dsin(azim ang) ) + (omega * radius)

W rel2 = (u_theta * u theta) + (uz * uz)

if (ivar.eqg.iu(l)) then

k _value = - AD position (nbelm) %dFX
! crvimp (iel) = min(0.0, (- 2.0 * k value * dsin(azim ang) * u_ theta) )
crvimp (iel) = - 2.0 * k value * dsin(azim ang) * u_theta

crvexp (iel) - k value * ( W rel2 - (2.0 * dsin(azim ang) * u_ theta * ux) )
o Sy source term —---------------—-——————— -

else if (ivar.eqg.iv(l)) then

k _value = - AD position (nbelm) %dFY
! crvimp (iel) = min (0.0, (2.0 * k value * dcos(azim ang) * u_ theta))
crvimp (iel) = 2.0 * k value * dcos(azim ang) * u theta

crvexp (iel) - k value * ( W rel2 + (2.0 * dcos(azim ang) * u theta * uy) )

else if (ivar.eqg.iw(l)) then

k value = - AD position (nbelm) %dFZ
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! crvimp (iel) = min(0.0, (- 2.0 * k value * uz) )
crvimp (iel) = - 2.0 * k_value * uz
crvexp (iel) = k_value * ( (uz * uz) - (u_theta * u_theta) )
endif
enddo
endif

end of loop for momentum source terms consists of Sx, Sy and Sz
! deallocate dynamic arrays associated with the 2D blade design data base

! the Actuator Disc elements

if ((ncall == 3).and.( ntcabs >= ntmabs)) then
don =1, n be
current => blade position(n)%ptr bsection
do while ( associated( current ) )
previous => current
current => current%next
deallocate( previous )
end do
enddo ! loop of n_be
deallocate (blade position)
do n = 1, nMax _elms_stop (Nfarmax)
current => AD position(n)%ptr_Belementl
do while ( associated( current ) )
previous => current
current => current%next
deallocate( previous )
end do
enddo
do n = 1, nMax elms stop (Nfarmax)
current => AD position(n)%ptr_Belement2
do while ( associated( current ) )
previous => current
current => current%next
deallocate( previous )

end do
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enddo
deallocate (AD position)
e
! Close files at final time step
e
if (irangp.le.0) then
do i1 =1, 1
close (impout (ii))
enddo
endif
|
! Close files at final time step
|
endif
1 ________
! Formats

1000 format (' User source termes for variable

! End

if (ncall == 3) then

if (irangp.le.0) then

print*,' time step = ',ntcabs
endif
ncall = 0
endif
return
contains

subroutine find cl cd(alpha,Nrec,ptr bsect,cl,cd, icheck)

use turbine design

',28,/)

Page 74 of 77



PerAWaT

WG3 WP2 D5b

implicit none

integer irec,Nrec,n

double precision cl,cd,cll,cl2,cdl,cd2,alpha,alphal,alpha2, interpl,

double precision, parameter :: v_small = 1.0d-6
double precision, parameter :: alfmin = -3.14
double precision, parameter :: cd max = 1.07
type (b_section), pointer :: ptr bsect

logical icheck

icheck = .true.

= Nrec - 1

if (alpha > alfmin) then

do irec = 1,n

alphal = ptr bsect%alpha

if (alphal == -999) call error message ("errorl with find cl cd")
cll = ptr_bsect%cl
cdl = ptr_bsect%cd

ptr _bsect => ptr bsect%next
alpha2 = ptr bsect%alpha
if (alpha2 == -999) call error message ("error2 with find cl cd")

cl2

ptr_bsect%cl

cd2

ptr_bsect%cd

if ((alpha >= alphal) .and. (alpha <= alpha2)) then

icheck = .false.
exit
endif
enddo
interpl = (alpha2 -alphal)

if (dabs(interpl) < v_small)then
call error message("error4 with find cl cd")
endif
interp = (alpha -alphal)/interpl
cl = cll + interp *(cl2 -cll)
cd = cdl + interp *(cd2 -cdl)

if (cd > cd max) cd = cd max

else

alphal = ptr bsect%alpha

if (alphal == -999) call error message ("errorl with find cl cd")

cll ptr bsect%cl

cdz2 = ptr bsect%cd

interp
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ptr_bsect => ptr_bsect%next

alpha2 = ptr_bsect%alpha

if (alphal == -999) call error_message ("error2 with find cl cd")
cl2 = ptr_bsect%cl

cdl = ptr_bsect%cd

interpl = (alpha2 -alphal)

if (dabs(interpl) < v_small)then
call error message ("error4 with find cl cd")
endif

interp = (alpha -alphal)/interpl

cl = cll + interp *(cl2 -cll)
cd = 0.5 * (cd2 + cdl)
endif
return
end subroutine find cl cd

end subroutine ustsns
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