Citation |
Sutherland, D.R.J, Noble, D.R., Steynor, J., Davey, T. and Bruce, T. Characterisation of current and turbulence in the FloWave Ocean Energy Research Facility, Ocean Engineering,139: 103-115, 2018. https://doi.org/10.1016/j.oceaneng.2017.02.028. Cite this using DataCite |
Author(s) |
Sutherland, D.R.J, Noble, D.R., Steynor, J., Davey, T. and Bruce, T. |
Project partner(s) |
University of Edinburgh |
Publisher |
Ocean Engineering,139: 103-115 |
DOI |
https://doi.org/10.1016/j.oceaneng.2017.02.028 |
Abstract |
Tidal energy is a developing industry and requires high precision test facilities which replicate the full-scale flows as accurately as possible to develop new technologies. In particular, the spatial and temporal variation must be well understood. FloWave is a state-of-the-art test facility with the ability to produce multi-directional waves and currents. This work investigates the mean and turbulent flow parameters throughout the tank using an ADV. The goal is to provide a comprehensive characterisation of the flow in the tank, in a robust and repeatable manner. These flow parameters are then compared to sample data from field measurements for context.; The turbulence intensities are normally distributed in the range of 5-11% and integral length scales were log normally distributed over a 0.18-0.41 m range across the test area. The Reynolds stresses showed the streamwise-vertical pairwere relatively constant throughout the depth, with values in the range 0.31 to 0.15 Pa, while the transverse-vertical pair show high vertical variation with values of -1.35 to 0.20 Pa. For the majority of locations the flow metrics are generally realistic compared with those measured at the Fall of Warness site. This work improves the understanding of flow behaviour in the tank, facilitating higher confidence testing of scaled devices.
Highlights- An overview of the spatial variation of mean flow and turbulence metrics from the FloWave combined wave and current test facility.
- Metrics show variation across all directions, but are within a reasonable range in the test area.
- Metrics are shown in the main to be comparable to those measured at real tidal sites.
This work was partly funded via IDCORE, the Industrial Doctorate Centre forOffshore Renewable Energy, which trains research engineers whose work in conjunction with sponsoring companies aims to accelerate the deployment of offshore wind, wave and tidal-current technologies |
Associated Project(s) |
ETI-MA2003: Industrial Doctorate Centre for Offshore Renewable Energy (IDCORE) |
Associated Dataset(s) |
No associated datasets |
Associated Publication(s) |
A model to map levelised cost of energy for wave energy projects An Integrated Data Management Approach for Offshore Wind Turbine Failure Root Cause Analysis An investigation of the effects of wind-induced inclination on floating wind turbine dynamics: heave plate excursion Application of an offshore wind farm layout optimization methodology at Middelgrunden wind farm Characterization of the tidal resource in Rathlin Sound Comparison of Offshore Wind Farm Layout Optimization Using a Genetic Algorithm and a Particle Swarm Optimizer Component reliability test approaches for marine renewable energy Constraints Implementation in the Application of Reinforcement Learning to the Reactive Control of a Point Absorber Control of a Realistic Wave Energy Converter Model Using Least-Squares Policy Iteration Cost Reduction to Encourage Commercialisation of Marine in the UK Cumulative impact assessment of tidal stream energy extraction in the Irish Sea Design diagrams for wavelength discrepancy in tank testing with inconsistently scaled intermediate water depth Development of a Condition Monitoring System for an Articulated Wave Energy Converter Dynamic mooring simulation with Code(-)Aster with application to a floating wind turbine ETI Insights Report - Wave Energy Environmental interactions of tidal lagoons: A comparison of industry perspectives Exploring Marine Energy Potential in the UK Using a Whole Systems Modelling Approach Hybrid, Multi-Megawatt HVDC Transformer Topology Comparison for Future Offshore Wind Farms Hydrodynamic analysis of a ducted, open centre tidal stream turbine using blade element momentum theory Offshore wind farm electrical cable layout optimization Offshore wind installation vessels - A comparative assessment for UK offshore rounds 1 and 2 Optimisation of Offshore Wind Farms Using a Genetic Algorithm Quantifying uncertainty in acoustic measurements of tidal flows using a “Virtual” Doppler Current Profiler Re-creation of site-specific multi-directional waves with non-collinear current Reactive control of a two-body point absorber using reinforcement learning Reactive control of a wave energy converter using artificial neural networks Reliability and O & M sensitivity analysis as a consequence of site specific characteristics for wave energy converters Reliability prediction for offshore renewable energy: Data driven insights Resource characterization of sites in the vicinity of an island near a landmass Review and application of Rainflow residue processing techniques for accurate fatigue damage estimation Sensitivity analysis of offshore wind farm operation and maintenance cost and availability Simulating Extreme Directional Wave Conditions Testing Marine Renewable Energy Devices in an Advanced Multi-Directional Combined Wave-Current Environment Testing the robustness of optimal access vessel fleet selection for operation and maintenance of offshore wind farms The Industrial Doctorate Centre for Offshore Renewable Energy(IDCORE) - Case Studies The SPAIR method: Isolating incident and reflected directional wave spectra in multidirectional wave basins The effects of wind-induced inclination on the dynamics ofsemi-submersible floating wind turbines in the time domain The power-capture of a nearshore, modular, flap-type wave energy converter in regular waves UK offshore wind cost optimisation: top head mass (Presentation to All Energy, 10th May 2017) |
|