go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number EP/E026516/1
Title THEORETICAL INVESTIGATION OF TURBULENT COMBUSTION IN STRATIFIED INHOMOGENOUS MIXTURES USING DIRECT NUMERICAL SIMULATION
Status Completed
Energy Categories Fossil Fuels: Oil Gas and Coal(Oil and Gas, Oil and gas combustion) 100%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields ENGINEERING AND TECHNOLOGY (Mechanical, Aeronautical and Manufacturing Engineering) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Professor N (Nilanjan ) Chakraborty
No email address given
Mechanical and Systems Engineering
Newcastle University
Award Type Standard
Funding Source EPSRC
Start Date 01 August 2007
End Date 31 July 2010
Duration 36 months
Total Grant Value £147,093
Industrial Sectors No relevance to Underpinning Sectors
Region North East
Programme Materials, Mechanical and Medical Eng
 
Investigators Principal Investigator Professor N (Nilanjan ) Chakraborty , Mechanical and Systems Engineering, Newcastle University (100.000%)
Web Site
Objectives
Abstract The aim of this project is to understand the effects of turbulence on hydrocarbon fuel combustion where the fuel and oxidizer distribution form a highly stratified mixture at the time of ignition. For stratified charge combustion the reactants are neither homogeneously mixed (premixed) nor completely separated (non- premixed). Thus the analysis of this kind of combustion has special modelling needs in comparison to fully premixed or fully non-premixed flames. Turbulent combustion in a stratified fuel-air mixture is highly relevant in the context of both spark-ignition gasoline and compression-ignition Diesel engines and has the potential for reducing fuel consumption especially at low-speed, light- load operations in automobile applications. Stratified-charge combustion can also be found in the Lean Premixed Prevaporised (LPP) combustors in aircraft gas turbines where fuel and injected secondary air form an inhomogeneous fuel-air mixture ahead of the flame front. The capability ofpredicting accurately the flame propagation behaviour in the presence of mixture inhomogeneities and intense turbulence would facilitate the development of low-emission, energy-efficient devices, such as automotive engines and gas-turbine combustors. The proposed research project consists of three parts. In the first, three-dimensional (3-D) Direct Numerical Simulations (DNS) with simplified chemistry, appropriate for the combustion of realistic hydrocarbon fuels, will be performed for a variety of mixing fields and turbulence intensities to enhance the present state of fundamental understanding and to create a database for the assessment of existing combustion models and to develop new models wherever necessary. Three-dimensional DNS with a reasonable degree of detailed chemistry will be carried out based on the information gained from 3-D DNS with simplified chemistry. The second part of the project involves the development of a combustion model in the context of Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulations (LES). The model will be implemented with a view to future incorporation into industry-standard Computational Fluid Dynamics (CFD) packages, which can then be used for engineering design purposes
Publications (none)
Final Report (none)
Added to Database 01/01/07