UKERC Energy Data Centre: Projects

Projects: Projects for Investigator
UKERC Home >> UKERC Energy Data Centre >> Projects >> Choose Investigator >> All Projects involving >> EP/M020932/1
 
Reference Number EP/M020932/1
Title Deep UV high-value manufacturing laser instruments
Status Completed
Energy Categories NUCLEAR FISSION and FUSION(Nuclear Fusion) 15%;
NOT ENERGY RELATED 85%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields PHYSICAL SCIENCES AND MATHEMATICS (Physics) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Dr JI Mackenzie
No email address given
Optoelectronics Research Centre
University of Southampton
Award Type Standard
Funding Source EPSRC
Start Date 01 August 2015
End Date 31 July 2019
Duration 48 months
Total Grant Value £563,404
Industrial Sectors Manufacturing
Region South East
Programme Manufacturing : Manufacturing
 
Investigators Principal Investigator Dr JI Mackenzie , Optoelectronics Research Centre, University of Southampton (99.998%)
  Other Investigator Professor WA Clarkson , Optoelectronics Research Centre, University of Southampton (0.001%)
Professor Y Yang , School of Engineering Sciences, University of Southampton (0.001%)
  Industrial Collaborator Project Contact , STFC Rutherford Appleton Laboratory (RAL) (0.000%)
Project Contact , Laser Micromachining Limited (0.000%)
Project Contact , Litron Lasers (0.000%)
Web Site
Objectives
Abstract In this instrument development project we will be designing, constructing and testing two laser systems producing UV light pulses with sufficient energy to mark, cut or drill various non-ferrous engineering materials, be it removing small amounts precisely or in a wholesale manner that accompanies an explosion of the target material. The key advantages of the proposed systems are that they will be efficient and offer unique properties for the emitted light that cannot be found in any other laser system in the world. The first is the colour, or wavelength, of the light that will be shorter than almost all other solid-state laser systems; next and for just one of the instruments, the energy in each pulse and their frequency of arrival will be comparable to the smaller industrial-standard excimer gas lasers, which are used for many processes in the electronics manufacturing industry but rely on toxic and corrosive gases and very high voltage discharges to generate the UV light; while the second instrument will have one thousand times less energy per pulse than the first, it will deliver the same number more pulses per second, making it very useful for rapid precision micro-processing, where speed and accuracy are a premium.For us to be able to make these novel laser systems we will exploit an old technology that has re-emerged as a potential platform architecture, cryogenic cooling. Cryogenic cooling applied to high energy laser systems with high average powers has become accepted as the credible route toward laser driven fusion reactors and extreme-peak-power laser facilities (NIF - https://lasers.llnl.gov/, DiPOLE - at STFC Rutherford Appleton Laboratory (RAL) http://www.stfc.ac.uk, HiLASE - http://www.hilase.cz), clearly evidence of the potential efficiency of the approach. Employing this method we will develop a platform technology that underpins both of the systems detailed above and will enable the unique characteristics of our proposed manufacturing laser instruments. At the end of the project we will have developed a clear route for transferring the knowledge to enable the manufacturing of these lasers and begun testing their performance for materials processing in collaboration with UK laser micro-processing industrial partners.
Publications (none)
Final Report (none)
Added to Database 13/03/15