go to top scroll for more


Projects: Projects for Investigator
Reference Number EP/L027437/1
Title Transforming heat-recovery system performance by exploiting multi component turbine flows
Status Completed
Energy Categories Energy Efficiency(Industry) 100%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields ENGINEERING AND TECHNOLOGY (Mechanical, Aeronautical and Manufacturing Engineering) 100%
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Dr A P S Wheeler
No email address given
School of Engineering Sciences
University of Southampton
Award Type Standard
Funding Source EPSRC
Start Date 01 December 2014
End Date 30 November 2019
Duration 60 months
Total Grant Value £798,716
Industrial Sectors Energy
Region South East
Programme Energy : Energy
Investigators Principal Investigator Dr A P S Wheeler , School of Engineering Sciences, University of Southampton (100.000%)
  Industrial Collaborator Project Contact , GE Global Research, USA (0.000%)
Web Site
Abstract Living standards in the UK are at significant risk from the rising costs of energy and the increasing gap between demand and the UK's generating capacity. Plugging this gap requires technological innovations which are affordable and can be implemented over reasonably short time-scales. An important area where efficiency gains can be achieved quickly is improving the management of heat released from industrial processes. All industrial and power generation processes produce heat which is often released into the environment in the form of high temperature exhaust products. New technologies are being developed to recover this otherwise wasted energy for use elsewhere, such as electricity, heating or cooling. If applied across the UK manufacturing sector, these technologies could save the energy output of around 20 power stations. Heat-recovery technologies are also used for renewable power from biomass, geothermal, solar-thermal sources and in de-centralized power generation. The development of heat recovery technology is therefore important in terms of cutting our carbon footprint as well as increasing UK energy security.Heat recovery systems work by transferring heat into a high-pressure working-fluid, using a heat exchanger. In order to produce electricity, the working fluid drives a turbine which is connected to an electrical generator. Heat recovery systems often use working fluids which are refrigerants or long-chain hydrocarbons. The properties of these working fluids differ greatly from those which have traditionally been used within turbines (such as air within aero-engines/gas-turbines or water vapour within steam turbines) and can be made up of several components including mixtures of gases and liquids. There is very little known about the behaviour of these unconventional working fluids within turbines largely due to a lack of experimental data with which to test current theories. This is important because turbine designers require accurate models in order to develop high performance machines, and uncertainties in the modelling can have a detrimental impact on both the development costs and the overall performance of a heat recovery system. There is also a potential to exploit the unusual behaviour of these working fluids, such as their ability to change from liquid to gas across the turbine, which can be exploited to increase system power to size ratios (power density) in ways not possible using normal working fluids like water.The project will explore how the behaviour of multi-component fluids can be used to increase turbine performance. In order to achieve this, the work will involve developing methods to simulate multi-component fluids within turbines. The project will use experiments and computational techniques to model these flows and use the results from this work to improve current computational methods. The project involves a collaboration with GE who are global leader in the design, manufacture and supply of heat recovery systems. GE will incorporate the results of this work into their design systems. In doing so, the results from this project will accelerate the development of heat-recovery technologies which will be used world-wide.
Publications (none)
Final Report (none)
Added to Database 16/07/15