go to top scroll for more

Projects


Projects: Projects for Investigator
Reference Number EP/K015354/1
Title Biologically Inspired Nanostructures for Smart Windows with Antireflection and Self-Cleaning Properties
Status Completed
Energy Categories Energy Efficiency(Residential and commercial) 100%;
Research Types Basic and strategic applied research 100%
Science and Technology Fields PHYSICAL SCIENCES AND MATHEMATICS (Physics) 75%;
PHYSICAL SCIENCES AND MATHEMATICS (Metallurgy and Materials) 25%;
UKERC Cross Cutting Characterisation Not Cross-cutting 100%
Principal Investigator Dr I Papakonstantinou
No email address given
Electronic and Electrical Engineering
University College London
Award Type Standard
Funding Source EPSRC
Start Date 01 March 2013
End Date 01 September 2015
Duration 31 months
Total Grant Value £100,022
Industrial Sectors Construction
Region London
Programme NC : Engineering
 
Investigators Principal Investigator Dr I Papakonstantinou , Electronic and Electrical Engineering, University College London (100.000%)
  Industrial Collaborator Project Contact , Pilkington Group Ltd (0.000%)
Web Site
Objectives
Abstract Smart thermochromic windows whose insulation properties are tuned by the ambient temperature have been investigated extensively over recent years to improve energy efficiency of commercial and residential buildings. These windows are typically coated with thermochromic materials that exhibit a fully reversible, temperature dependent transition between semiconductor and metallic phases. During hot weather, a smart window passes all or part of the visible radiation incident and rejects the majority of the Sun's near-infrared radiation; thus the need for air conditioning is reduced. During cooler weather, both visible and infrared (IR) radiation is fully transmitted, limiting the need for internal heating. A popular material for such intelligent coatings is Vanadium dioxide (VO2) due to i) the radiation stop-band manifesting in the IR region, ii) the advantage that it can easily be applied to large substrates and iii) the ability to lower its phase transition temperature by doping it with metal compounds, most commonly tungsten. Calculations have shown that a VO2 coating can deliver a 30% reduction in energy consumption of buildings in countries with hot climates such as Italy and Egypt. Nonetheless, the merits of VO2 coatings quickly diminish in colder climates and in places like Helsinki or Moscow they, in fact, deliver a negative energy balance.One very important factor for this performance reversal is the high refractive index that VO2 exhibits in its cold-transparent phase, which results in a large portion of the incident light being reflected - 30%-35% in the visible for a 50 nm thick VO2 film on glass. This figure compares with <4% reflectivity in conventional glass windows, meaning that a thermochromic window is much darker and colder than its plain glass counterpart in the winter, which in turn translates to an actual increase in the energy required for lighting and heating a building. In addition, dirt and stains further degrade the transmission properties of a smart window. In order to overcome the above limitations, moth-eye type structures engineered to exhibit broadband and wide-angle antireflection properties are proposed, for the first time, to substantially improve the currently poor transmission properties of thermochromic smart windows and to pave the way for the commercialization of this technology. Our nanopatterned windows potentially have 72% higher transmission compared to existing thermochromic windows and in addition, they exhibit simultaneous self-cleaning properties without additional processing. This challenging, proof-of-concept, 24-month research project focuses on the fabrication and characterization of smart windows enhanced with moth-eye nanostructures and is divided into two research streams: A) Fabrication and characterization of antireflection and self-cleaning moth-eye nanostructures directly onto glass, appropriate for new high-end window products. B) Development of potentially low-cost thermochromic polymer thin-film to retrofit existing non-smart windows
Publications (none)
Final Report (none)
Added to Database 13/03/13