Projects: Projects for Investigator |
||
Reference Number | NIA_NGGD0085 | |
Title | BioH2 Project: Production of hydrogen by the gasification of waste | |
Status | Completed | |
Energy Categories | Hydrogen and Fuel Cells(Hydrogen, Hydrogen production) 50%; Renewable Energy Sources(Bio-Energy, Production of transport biofuels (incl. Production from wastes)) 25%; Fossil Fuels: Oil Gas and Coal(CO2 Capture and Storage, CO2 capture/separation) 25%; |
|
Research Types | Applied Research and Development 100% | |
Science and Technology Fields | ENGINEERING AND TECHNOLOGY (Chemical Engineering) 100% | |
UKERC Cross Cutting Characterisation | Not Cross-cutting 100% | |
Principal Investigator |
Project Contact No email address given Cadent Gas |
|
Award Type | Network Innovation Allowance | |
Funding Source | Ofgem | |
Start Date | 01 October 2016 | |
End Date | 01 June 2017 | |
Duration | 8 months | |
Total Grant Value | £519,437 | |
Industrial Sectors | Technical Consultancy | |
Region | London | |
Programme | Network Innovation Allowance | |
Investigators | Principal Investigator | Project Contact , Cadent Gas (99.998%) |
Other Investigator | Project Contact , Progressive Energy Ltd (0.001%) Project Contact , Advanced Plasma Power Ltd (0.001%) |
|
Web Site | http://www.smarternetworks.org/project/NIA_NGGD0085 |
|
Objectives | The work on each task will accomplish the following: 1) Definition of functional requirements for hydrogen production facilities a. Definition of commercial applications for hydrogen
b. Resulting in a functional specification for each requirement:
2) Piloting of Hydrogen Production
3) Commercial Plant definition and evaluation
4) Definition of a hydrogen demonstration project
5) Project management In achieving the objectives outlined above, the project will have addressed the barriers to hydrogen production by gasification of waste in a robust and cost-effective way, and laid the groundwork for future demonstration and commercial facilities. The project is also expected to show that this approach is a cost-effective route to bio-hydrogen, and to demonstrate the ability to capture carbon dioxide as part of the process. Key indicators of a successful project will be: Demonstration of hydrogen production from waste and CO2-separation using a modified form of the BioSNG Demonstration plant. This not only provides technical demonstration, but an important communication method about feasibility of hyd rogen production from waste. Preliminary definition of commercial facility, including robust understanding of economic and environmental benefitsIdentification of partners, investors and site for larger-scale demonstration A large driver for conducting the study at this point in time is the availability of the BioSNG Demonstration plant, which enables demonstration of hydrogen production from waste at remarkably low cost. Delivering the programme on budget will be important, in order to obtain maximum benefit from this opportunity leveraging the £5M BioSNG Demonstration plant with a small additional programme, exploiting the existing equipment and mobilised team. This project unlocks one of the key issues associated with the role out of hydrogen; how to deliver material quantities of low cost and low carbon hydrogen. |
|
Abstract | Hydrogen is seen by many as a key element of the UK’s future green energy mix. More than one project is currently working to move hydrogen use forward: H21 in Leeds is researching the feasibility of converting the 7 bar and below gas network to pure hydrogen, and the HyDeploy project will trial use of up to 20% hydrogen mixed with natural gas in the gas networks. An outstanding question is where the hydrogen comes from. It has been suggested that excess renewable power generation is used to produce hydrogen via electrolysis, but it is not immediately obvious how this would work commercially. Similarly, production of hydrogen from natural gas entails substantial additional financial and carbon costs from the conversion process, and relies entirely on establishment of Carbon Capture and Storage (CCS) infrastructure to deliver low carbon hydrogen. Production of hydrogen from biomass rich waste delivers low carbon and low cost hydrogen without CCS, and as shown in National Grid’s 2015 Future Energy Scenarios report, the production of hydrogen using biomass gasification with CCS delivers the negative emissions necessary to offset emissions from sectors that cannot decarbonise. National Grid, Advanced Plasma Power and Progressive Energy are currently engaged in a NIC-funded project ("BioSNG Demonstration Plant") which takes municipal waste and waste wood, gasifies it and uses the resultant syngas to produce methane. Inherent to this process are both the shifting of syngas to increase hydrogen content prior to methanation, and the separation of CO2, providing an obvious route to hydrogen production and CO2 capture. Reconfiguring this technology to produce hydrogen rather than SNG would represent a simplification of the process, because no methanation would be necessary. In addition, because methanation catalysts are the most sensitive to impurities, the clean-up requirements for the syngas would be less stringent for hydrogen production. This approach offers the prospect of hydrogen production at parity with the cost of natural gas, and with the potential of negative carbon emissions where the separated CO2 displaces fossil fuel derived CO2 or it is sequestered Before this waste-to-hydrogen approach can be deployed commercially, several barriers must be overcome. Firstly, the commercial applications must be sufficiently well understood that a functional specification for hydrogen production can be produced. Secondly, the feasibility of hydrogen production from waste derived feedstock must be demonstrated to show that the concept is credible. Thirdly, the process must be optimised for commercial deployment, with designs produced, environmental impact understood and costs modelled. Fourthly, the chosen designs must be demonstrated at larger scale, with hydrogen supplied to end users. This project will seekto pushforward commercial deployment of hydrogen production from waste by systematically addressing each barrier.
|
|
Data | No related datasets |
|
Projects | No related projects |
|
Publications | No related publications |
|
Added to Database | 09/08/18 |