go to top scroll for more

Transport - An affordable transition to sustainable and secure energy for light vehicles in the UK - Full Report

This resource links to a document we hold in our system

Abstract:

The UK has committed to a legally binding obligation to cut greenhouse gas emissions by 80% by 2050 (against 1990). The primary issue is atmospheric concentration of CO2 which, once emitted, remains in the atmosphere for up to two centuries. Consequently, minimising cumulative CO2 emissions is at least as important as the 2050 obligation.

Light vehicles contribute around 16% of UK CO2 emissions, and are a major factor in congestion and urban air quality. Light vehicles will remain central to UK mobility in 2050, so transforming the energy infrastructure is essential to emissions reduction.

Cutting transport carbon emissions is expensive compared to most other sectors. Innovation in other parts of the energy generation system such as the development of biomass electricity generation with carbon capture and storage could allow some fossil fuel to still be used in light vehicles in 2050. This could amount to approximately 40% of the 2010 energy mix. This is likely to significantly reduce the overall cost of carbon reduction.

To make energy affordable, capital costs need to be amortised over long payback periods (often 20+ years) with low investment risk and high utilisation at scale. A century of evolution created an efficient energy infrastructure which any new solution must compete with.

The most important finding is that UK energy and climate change goals can be achieved without needing consumers to compromise on expectations for light vehicles. The least risk, least cost, evolutionary pathway is defined in this report for developing the UK energy infrastructure for light vehicles. This path is highly likely to achieve UK energy and climate change goals for 2050 and minimise atmospheric concentration of CO2 from cumulative emissions. It retains significant market flexibility to continually optimise choices during this transition period.

Publication Year:

2013

Publisher:

ETI

Author(s):

ETI

Language:

English

File Type:

application/pdf

File Size:

2631784 B

Rights:

Energy Technologies Institute Open Licence for Materials

Rights Overview:

The Energy Technologies Institute is making this document available to use under the Energy Technologies Institute Open Licence for Materials. Please refer to the Energy Technologies Institute website for the terms and conditions of this licence. The Information is licensed "as is" and the Energy Technologies Institute excludes all representations, warranties, obligations and liabilities in relation to the Information to the maximum extent permitted by law. The Energy Technologies Institute is not liable for any errors or omissions in the Information and shall not be liable for any loss, injury or damage of any kind caused by its use. This exclusion of liability includes, but is not limited to, any direct, indirect, special, incidental, consequential, punitive, or exemplary damages in each case such as loss of revenue, data, anticipated profits, and lost business. The Energy Technologies Institute does not guarantee the continued supply of the Information. Notwithstanding any statement to the contrary contained on the face of this document, the Energy Technologies Institute confirms that it has the right to publish this document.

Further information:

N/A

Region:

United Kingdom

Publication Type:

Technical Report

Subject:

Transport

Theme(s):

Transport - Light Duty Vehicles

Related Publications(s):

An ETI Perspective - Consumers, Vehicles and Energy Integration (CVEI): Understanding the changes needed to markets and energy supply to encourage a wider take up of plug-in vehicles

An ETI Perspective - The route to a low cost, low carbon light vehicle transition

An affordable and effective route to decarbonising transport - Presentation

Consumers, Vehicles and Energy Integration (CVEI) - D3.2. Battery State of Health Model Report

Consumers, Vehicles and Energy Integration (CVEI) - D4.1. Initial Analysis of Technology, Commercial and Market Building Blocks for Energy Infrastructure

Consumers, Vehicles and Energy Integration (CVEI) Project Summary - Presentation 2016

Consumers, Vehicles and Energy Integration (CVEI) project - Overview Presentation 2017

Consumers, Vehicles and Energy Integration (CVEI) project Summary - Presentation 2017

Consumers, Vehicles and Energy Integration (CVEI): Fleet Study Report

Consumers, Vehicles and Energy Integration (CVEI): Supplementary Details of Design, Materials and Management Arrangements for Consumer Trials

Consumers, Vehicles and Energy Integration Project - D1.1. Summary of approach, conceptual design and key research questions

Consumers, Vehicles and Energy Integration Project - D1.3. Market Design and System Integration (full report)

Consumers, Vehicles and Energy Integration Project - D1.3. Market Design and System Integration (summary report)

Consumers, Vehicles and Energy Integration Project - D1.4. Stage 2 Trial Design, Methodology and Business Case

Consumers, Vehicles and Energy Integration Project - D2.1. Consumer attitudes and behaviours report

Consumers, Vehicles and Energy Integration Project - D3.1. Battery Cost and Performance and Battery Management System Capability Report and Battery Database Report

Consumers, Vehicles and Energy Integration Project - D4.2. Final Analysis of Technology, Commercial and Market Building Blocks for Energy Infrastructure Report

ETI Insights Report - Transport - An affordable transition to sustainable and secure energy for light vehicles in the UK

Infographic - 10 years of innovation - Light Duty Vehicles

Real world intelligent charging for the mass market - Presentation

Vehicle electrification impacts - Presentation